forked from FirefoxGraphics/qcms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiccread.c
1433 lines (1224 loc) · 40.1 KB
/
iccread.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* vim: set ts=8 sw=8 noexpandtab: */
// qcms
// Copyright (C) 2009 Mozilla Foundation
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h> //memset
#include "qcmsint.h"
/* It might be worth having a unified limit on content controlled
* allocation per profile. This would remove the need for many
* of the arbitrary limits that we used */
typedef uint32_t be32;
typedef uint16_t be16;
static be32 cpu_to_be32(uint32_t v)
{
#ifdef IS_LITTLE_ENDIAN
return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24);
#else
return v;
#endif
}
static be16 cpu_to_be16(uint16_t v)
{
#ifdef IS_LITTLE_ENDIAN
return ((v & 0xff) << 8) | ((v & 0xff00) >> 8);
#else
return v;
#endif
}
static uint32_t be32_to_cpu(be32 v)
{
#ifdef IS_LITTLE_ENDIAN
return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24);
//return __builtin_bswap32(v);
#else
return v;
#endif
}
static uint16_t be16_to_cpu(be16 v)
{
#ifdef IS_LITTLE_ENDIAN
return ((v & 0xff) << 8) | ((v & 0xff00) >> 8);
#else
return v;
#endif
}
/* a wrapper around the memory that we are going to parse
* into a qcms_profile */
struct mem_source
{
const unsigned char *buf;
size_t size;
bool valid;
const char *invalid_reason;
};
static void invalid_source(struct mem_source *mem, const char *reason)
{
mem->valid = false;
mem->invalid_reason = reason;
}
static uint32_t read_u32(struct mem_source *mem, size_t offset)
{
/* Subtract from mem->size instead of the more intuitive adding to offset.
* This avoids overflowing offset. The subtraction is safe because
* mem->size is guaranteed to be > 4 */
if (offset > mem->size - 4) {
invalid_source(mem, "Invalid offset");
return 0;
} else {
be32 k;
memcpy(&k, mem->buf + offset, sizeof(k));
return be32_to_cpu(k);
}
}
static uint16_t read_u16(struct mem_source *mem, size_t offset)
{
if (offset > mem->size - 2) {
invalid_source(mem, "Invalid offset");
return 0;
} else {
be16 k;
memcpy(&k, mem->buf + offset, sizeof(k));
return be16_to_cpu(k);
}
}
static uint8_t read_u8(struct mem_source *mem, size_t offset)
{
if (offset > mem->size - 1) {
invalid_source(mem, "Invalid offset");
return 0;
} else {
return *(uint8_t*)(mem->buf + offset);
}
}
static s15Fixed16Number read_s15Fixed16Number(struct mem_source *mem, size_t offset)
{
return read_u32(mem, offset);
}
static uInt8Number read_uInt8Number(struct mem_source *mem, size_t offset)
{
return read_u8(mem, offset);
}
static uInt16Number read_uInt16Number(struct mem_source *mem, size_t offset)
{
return read_u16(mem, offset);
}
static void write_u32(void *mem, size_t offset, uint32_t value)
{
*((uint32_t *)((unsigned char*)mem + offset)) = cpu_to_be32(value);
}
static void write_u16(void *mem, size_t offset, uint16_t value)
{
*((uint16_t *)((unsigned char*)mem + offset)) = cpu_to_be16(value);
}
#define BAD_VALUE_PROFILE NULL
#define INVALID_PROFILE NULL
#define NO_MEM_PROFILE NULL
/* An arbitrary 4MB limit on profile size */
#define MAX_PROFILE_SIZE 1024*1024*4
#define MAX_TAG_COUNT 1024
static void check_CMM_type_signature(struct mem_source *src)
{
//uint32_t CMM_type_signature = read_u32(src, 4);
//TODO: do the check?
}
static void check_profile_version(struct mem_source *src)
{
/*
uint8_t major_revision = read_u8(src, 8 + 0);
uint8_t minor_revision = read_u8(src, 8 + 1);
*/
uint8_t reserved1 = read_u8(src, 8 + 2);
uint8_t reserved2 = read_u8(src, 8 + 3);
/* Checking the version doesn't buy us anything
if (major_revision != 0x4) {
if (major_revision > 0x2)
invalid_source(src, "Unsupported major revision");
if (minor_revision > 0x40)
invalid_source(src, "Unsupported minor revision");
}
*/
if (reserved1 != 0 || reserved2 != 0)
invalid_source(src, "Invalid reserved bytes");
}
#define INPUT_DEVICE_PROFILE 0x73636e72 // 'scnr'
#define DISPLAY_DEVICE_PROFILE 0x6d6e7472 // 'mntr'
#define OUTPUT_DEVICE_PROFILE 0x70727472 // 'prtr'
#define DEVICE_LINK_PROFILE 0x6c696e6b // 'link'
#define COLOR_SPACE_PROFILE 0x73706163 // 'spac'
#define ABSTRACT_PROFILE 0x61627374 // 'abst'
#define NAMED_COLOR_PROFILE 0x6e6d636c // 'nmcl'
static void read_class_signature(qcms_profile *profile, struct mem_source *mem)
{
profile->class_type = read_u32(mem, 12);
switch (profile->class_type) {
case DISPLAY_DEVICE_PROFILE:
case INPUT_DEVICE_PROFILE:
case OUTPUT_DEVICE_PROFILE:
case COLOR_SPACE_PROFILE:
break;
default:
invalid_source(mem, "Invalid Profile/Device Class signature");
}
}
static void read_color_space(qcms_profile *profile, struct mem_source *mem)
{
profile->color_space = read_u32(mem, 16);
switch (profile->color_space) {
case RGB_SIGNATURE:
case GRAY_SIGNATURE:
break;
default:
invalid_source(mem, "Unsupported colorspace");
}
}
static void read_pcs(qcms_profile *profile, struct mem_source *mem)
{
profile->pcs = read_u32(mem, 20);
switch (profile->pcs) {
case XYZ_SIGNATURE:
case LAB_SIGNATURE:
break;
default:
invalid_source(mem, "Unsupported pcs");
}
}
struct tag
{
uint32_t signature;
uint32_t offset;
uint32_t size;
};
struct tag_index {
uint32_t count;
struct tag *tags;
};
static struct tag_index read_tag_table(qcms_profile *profile, struct mem_source *mem)
{
struct tag_index index = {0, NULL};
unsigned int i;
index.count = read_u32(mem, 128);
if (index.count > MAX_TAG_COUNT) {
invalid_source(mem, "max number of tags exceeded");
return index;
}
index.tags = malloc(sizeof(struct tag)*index.count);
if (index.tags) {
for (i = 0; i < index.count; i++) {
index.tags[i].signature = read_u32(mem, 128 + 4 + 4*i*3);
index.tags[i].offset = read_u32(mem, 128 + 4 + 4*i*3 + 4);
index.tags[i].size = read_u32(mem, 128 + 4 + 4*i*3 + 8);
}
}
return index;
}
// Checks a profile for obvious inconsistencies and returns
// true if the profile looks bogus and should probably be
// ignored.
bool qcms_profile_is_bogus(qcms_profile *profile)
{
float sum[3], target[3], tolerance[3];
float rX, rY, rZ, gX, gY, gZ, bX, bY, bZ;
bool negative;
unsigned i;
// We currently only check the bogosity of RGB profiles
if (profile->color_space != RGB_SIGNATURE)
return false;
if (profile->A2B0 || profile->B2A0 || profile->mAB || profile->mBA)
return false;
rX = s15Fixed16Number_to_float(profile->redColorant.X);
rY = s15Fixed16Number_to_float(profile->redColorant.Y);
rZ = s15Fixed16Number_to_float(profile->redColorant.Z);
gX = s15Fixed16Number_to_float(profile->greenColorant.X);
gY = s15Fixed16Number_to_float(profile->greenColorant.Y);
gZ = s15Fixed16Number_to_float(profile->greenColorant.Z);
bX = s15Fixed16Number_to_float(profile->blueColorant.X);
bY = s15Fixed16Number_to_float(profile->blueColorant.Y);
bZ = s15Fixed16Number_to_float(profile->blueColorant.Z);
// Sum the values; they should add up to something close to white
sum[0] = rX + gX + bX;
sum[1] = rY + gY + bY;
sum[2] = rZ + gZ + bZ;
// Build our target vector (see mozilla bug 460629)
target[0] = 0.96420f;
target[1] = 1.00000f;
target[2] = 0.82491f;
// Our tolerance vector - Recommended by Chris Murphy based on
// conversion from the LAB space criterion of no more than 3 in any one
// channel. This is similar to, but slightly more tolerant than Adobe's
// criterion.
tolerance[0] = 0.02f;
tolerance[1] = 0.02f;
tolerance[2] = 0.04f;
// Compare with our tolerance
for (i = 0; i < 3; ++i) {
if (!(((sum[i] - tolerance[i]) <= target[i]) &&
((sum[i] + tolerance[i]) >= target[i])))
return true;
}
#ifndef __APPLE__
// Check if any of the XYZ values are negative (see mozilla bug 498245)
// CIEXYZ tristimulus values cannot be negative according to the spec.
negative =
(rX < 0) || (rY < 0) || (rZ < 0) ||
(gX < 0) || (gY < 0) || (gZ < 0) ||
(bX < 0) || (bY < 0) || (bZ < 0);
#else
// Chromatic adaption to D50 can result in negative XYZ, but the white
// point D50 tolerance test has passed. Accept negative values herein.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=498245#c18 onwards
// for discussion about whether profile XYZ can or cannot be negative,
// per the spec. Also the https://bugzil.la/450923 user report.
// FIXME: allow this relaxation on all ports?
negative = false;
#endif
if (negative)
return true; // bogus
// All Good
return false;
}
#define TAG_bXYZ 0x6258595a
#define TAG_gXYZ 0x6758595a
#define TAG_rXYZ 0x7258595a
#define TAG_rTRC 0x72545243
#define TAG_bTRC 0x62545243
#define TAG_gTRC 0x67545243
#define TAG_kTRC 0x6b545243
#define TAG_A2B0 0x41324230
#define TAG_B2A0 0x42324130
#define TAG_CHAD 0x63686164
static struct tag *find_tag(struct tag_index index, uint32_t tag_id)
{
unsigned int i;
struct tag *tag = NULL;
for (i = 0; i < index.count; i++) {
if (index.tags[i].signature == tag_id) {
return &index.tags[i];
}
}
return tag;
}
#define XYZ_TYPE 0x58595a20 // 'XYZ '
#define CURVE_TYPE 0x63757276 // 'curv'
#define PARAMETRIC_CURVE_TYPE 0x70617261 // 'para'
#define LUT16_TYPE 0x6d667432 // 'mft2'
#define LUT8_TYPE 0x6d667431 // 'mft1'
#define LUT_MAB_TYPE 0x6d414220 // 'mAB '
#define LUT_MBA_TYPE 0x6d424120 // 'mBA '
#define CHROMATIC_TYPE 0x73663332 // 'sf32'
static struct matrix read_tag_s15Fixed16ArrayType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct tag *tag = find_tag(index, tag_id);
struct matrix matrix;
if (tag) {
uint8_t i;
uint32_t offset = tag->offset;
uint32_t type = read_u32(src, offset);
// Check mandatory type signature for s16Fixed16ArrayType
if (type != CHROMATIC_TYPE) {
invalid_source(src, "unexpected type, expected 'sf32'");
}
for (i = 0; i < 9; i++) {
matrix.m[i/3][i%3] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset+8+i*4));
}
matrix.invalid = false;
} else {
matrix.invalid = true;
invalid_source(src, "missing sf32tag");
}
return matrix;
}
static struct XYZNumber read_tag_XYZType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct XYZNumber num = {0, 0, 0};
struct tag *tag = find_tag(index, tag_id);
if (tag) {
uint32_t offset = tag->offset;
uint32_t type = read_u32(src, offset);
if (type != XYZ_TYPE)
invalid_source(src, "unexpected type, expected XYZ");
num.X = read_s15Fixed16Number(src, offset+8);
num.Y = read_s15Fixed16Number(src, offset+12);
num.Z = read_s15Fixed16Number(src, offset+16);
} else {
invalid_source(src, "missing xyztag");
}
return num;
}
// Read the tag at a given offset rather then the tag_index.
// This method is used when reading mAB tags where nested curveType are
// present that are not part of the tag_index.
static struct curveType *read_curveType(struct mem_source *src, uint32_t offset, uint32_t *len)
{
static const uint32_t COUNT_TO_LENGTH[5] = {1, 3, 4, 5, 7};
struct curveType *curve = NULL;
uint32_t type = read_u32(src, offset);
uint32_t count;
uint32_t i;
if (type != CURVE_TYPE && type != PARAMETRIC_CURVE_TYPE) {
invalid_source(src, "unexpected type, expected CURV or PARA");
return NULL;
}
if (type == CURVE_TYPE) {
count = read_u32(src, offset+8);
#define MAX_CURVE_ENTRIES 40000 //arbitrary
if (count > MAX_CURVE_ENTRIES) {
invalid_source(src, "curve size too large");
return NULL;
}
curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*count);
if (!curve)
return NULL;
curve->count = count;
curve->type = CURVE_TYPE;
for (i=0; i<count; i++) {
curve->data[i] = read_u16(src, offset + 12 + i*2);
}
*len = 12 + count * 2;
} else { //PARAMETRIC_CURVE_TYPE
count = read_u16(src, offset+8);
if (count > 4) {
invalid_source(src, "parametric function type not supported.");
return NULL;
}
curve = malloc(sizeof(struct curveType));
if (!curve)
return NULL;
curve->count = count;
curve->type = PARAMETRIC_CURVE_TYPE;
for (i=0; i < COUNT_TO_LENGTH[count]; i++) {
curve->parameter[i] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset + 12 + i*4));
}
*len = 12 + COUNT_TO_LENGTH[count] * 4;
if ((count == 1 || count == 2)) {
/* we have a type 1 or type 2 function that has a division by 'a' */
float a = curve->parameter[1];
if (a == 0.f)
invalid_source(src, "parametricCurve definition causes division by zero.");
}
}
return curve;
}
static struct curveType *read_tag_curveType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct tag *tag = find_tag(index, tag_id);
struct curveType *curve = NULL;
if (tag) {
uint32_t len;
return read_curveType(src, tag->offset, &len);
} else {
invalid_source(src, "missing curvetag");
}
return curve;
}
#define MAX_CLUT_SIZE 500000 // arbitrary
#define MAX_CHANNELS 10 // arbitrary
static void read_nested_curveType(struct mem_source *src, struct curveType *(*curveArray)[MAX_CHANNELS], uint8_t num_channels, uint32_t curve_offset)
{
uint32_t channel_offset = 0;
int i;
for (i = 0; i < num_channels; i++) {
uint32_t tag_len;
(*curveArray)[i] = read_curveType(src, curve_offset + channel_offset, &tag_len);
if (!(*curveArray)[i]) {
invalid_source(src, "invalid nested curveType curve");
break;
}
channel_offset += tag_len;
// 4 byte aligned
if ((tag_len % 4) != 0)
channel_offset += 4 - (tag_len % 4);
}
}
static void mAB_release(struct lutmABType *lut)
{
uint8_t i;
for (i = 0; i < lut->num_in_channels; i++){
free(lut->a_curves[i]);
}
for (i = 0; i < lut->num_out_channels; i++){
free(lut->b_curves[i]);
free(lut->m_curves[i]);
}
free(lut);
}
/* See section 10.10 for specs */
static struct lutmABType *read_tag_lutmABType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct tag *tag = find_tag(index, tag_id);
uint32_t offset = tag->offset;
uint32_t a_curve_offset, b_curve_offset, m_curve_offset;
uint32_t matrix_offset;
uint32_t clut_offset;
uint32_t clut_size = 1;
uint8_t clut_precision;
uint32_t type = read_u32(src, offset);
uint8_t num_in_channels, num_out_channels;
struct lutmABType *lut;
uint32_t i;
if (type != LUT_MAB_TYPE && type != LUT_MBA_TYPE) {
return NULL;
}
num_in_channels = read_u8(src, offset + 8);
num_out_channels = read_u8(src, offset + 9);
if (num_in_channels > MAX_CHANNELS || num_out_channels > MAX_CHANNELS)
return NULL;
// We require 3in/out channels since we only support RGB->XYZ (or RGB->LAB)
// XXX: If we remove this restriction make sure that the number of channels
// is less or equal to the maximum number of mAB curves in qcmsint.h
// also check for clut_size overflow. Also make sure it's != 0
if (num_in_channels != 3 || num_out_channels != 3)
return NULL;
// some of this data is optional and is denoted by a zero offset
// we also use this to track their existance
a_curve_offset = read_u32(src, offset + 28);
clut_offset = read_u32(src, offset + 24);
m_curve_offset = read_u32(src, offset + 20);
matrix_offset = read_u32(src, offset + 16);
b_curve_offset = read_u32(src, offset + 12);
// Convert offsets relative to the tag to relative to the profile
// preserve zero for optional fields
if (a_curve_offset)
a_curve_offset += offset;
if (clut_offset)
clut_offset += offset;
if (m_curve_offset)
m_curve_offset += offset;
if (matrix_offset)
matrix_offset += offset;
if (b_curve_offset)
b_curve_offset += offset;
if (clut_offset) {
assert (num_in_channels == 3);
// clut_size can not overflow since lg(256^num_in_channels) = 24 bits.
for (i = 0; i < num_in_channels; i++) {
clut_size *= read_u8(src, clut_offset + i);
if (clut_size == 0) {
invalid_source(src, "bad clut_size");
}
}
} else {
clut_size = 0;
}
// 24bits * 3 won't overflow either
clut_size = clut_size * num_out_channels;
if (clut_size > MAX_CLUT_SIZE)
return NULL;
lut = malloc(sizeof(struct lutmABType) + (clut_size) * sizeof(float));
if (!lut)
return NULL;
// we'll fill in the rest below
memset(lut, 0, sizeof(struct lutmABType));
lut->clut_table = &lut->clut_table_data[0];
if (clut_offset) {
for (i = 0; i < num_in_channels; i++) {
lut->num_grid_points[i] = read_u8(src, clut_offset + i);
if (lut->num_grid_points[i] == 0) {
invalid_source(src, "bad grid_points");
}
}
}
// Reverse the processing of transformation elements for mBA type.
lut->reversed = (type == LUT_MBA_TYPE);
lut->num_in_channels = num_in_channels;
lut->num_out_channels = num_out_channels;
if (matrix_offset) {
// read the matrix if we have it
lut->e00 = read_s15Fixed16Number(src, matrix_offset+4*0);
lut->e01 = read_s15Fixed16Number(src, matrix_offset+4*1);
lut->e02 = read_s15Fixed16Number(src, matrix_offset+4*2);
lut->e10 = read_s15Fixed16Number(src, matrix_offset+4*3);
lut->e11 = read_s15Fixed16Number(src, matrix_offset+4*4);
lut->e12 = read_s15Fixed16Number(src, matrix_offset+4*5);
lut->e20 = read_s15Fixed16Number(src, matrix_offset+4*6);
lut->e21 = read_s15Fixed16Number(src, matrix_offset+4*7);
lut->e22 = read_s15Fixed16Number(src, matrix_offset+4*8);
lut->e03 = read_s15Fixed16Number(src, matrix_offset+4*9);
lut->e13 = read_s15Fixed16Number(src, matrix_offset+4*10);
lut->e23 = read_s15Fixed16Number(src, matrix_offset+4*11);
}
if (a_curve_offset) {
read_nested_curveType(src, &lut->a_curves, num_in_channels, a_curve_offset);
}
if (m_curve_offset) {
read_nested_curveType(src, &lut->m_curves, num_out_channels, m_curve_offset);
}
if (b_curve_offset) {
read_nested_curveType(src, &lut->b_curves, num_out_channels, b_curve_offset);
} else {
invalid_source(src, "B curves required");
}
if (clut_offset) {
clut_precision = read_u8(src, clut_offset + 16);
if (clut_precision == 1) {
for (i = 0; i < clut_size; i++) {
lut->clut_table[i] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + 20 + i*1));
}
} else if (clut_precision == 2) {
for (i = 0; i < clut_size; i++) {
lut->clut_table[i] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + 20 + i*2));
}
} else {
invalid_source(src, "Invalid clut precision");
}
}
if (!src->valid) {
mAB_release(lut);
return NULL;
}
return lut;
}
static struct lutType *read_tag_lutType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct tag *tag = find_tag(index, tag_id);
uint32_t offset = tag->offset;
uint32_t type = read_u32(src, offset);
uint16_t num_input_table_entries;
uint16_t num_output_table_entries;
uint8_t in_chan, grid_points, out_chan;
uint32_t input_offset, clut_offset, output_offset;
uint32_t clut_size;
size_t entry_size;
struct lutType *lut;
uint32_t i;
if (type == LUT8_TYPE) {
num_input_table_entries = 256;
num_output_table_entries = 256;
entry_size = 1;
input_offset = 48;
} else if (type == LUT16_TYPE) {
num_input_table_entries = read_u16(src, offset + 48);
num_output_table_entries = read_u16(src, offset + 50);
if (num_input_table_entries == 0 || num_output_table_entries == 0) {
invalid_source(src, "Bad channel count");
return NULL;
}
entry_size = 2;
input_offset = 52;
} else {
assert(0); // the caller checks that this doesn't happen
invalid_source(src, "Unexpected lut type");
return NULL;
}
in_chan = read_u8(src, offset + 8);
out_chan = read_u8(src, offset + 9);
grid_points = read_u8(src, offset + 10);
clut_size = pow(grid_points, in_chan);
if (clut_size > MAX_CLUT_SIZE) {
invalid_source(src, "CLUT too large");
return NULL;
}
if (clut_size <= 0) {
invalid_source(src, "CLUT must not be empty.");
return NULL;
}
if (in_chan != 3 || out_chan != 3) {
invalid_source(src, "CLUT only supports RGB");
return NULL;
}
lut = malloc(sizeof(struct lutType) + (num_input_table_entries * in_chan + clut_size*out_chan + num_output_table_entries * out_chan)*sizeof(float));
if (!lut) {
invalid_source(src, "CLUT too large");
return NULL;
}
/* compute the offsets of tables */
lut->input_table = &lut->table_data[0];
lut->clut_table = &lut->table_data[in_chan*num_input_table_entries];
lut->output_table = &lut->table_data[in_chan*num_input_table_entries + clut_size*out_chan];
lut->num_input_table_entries = num_input_table_entries;
lut->num_output_table_entries = num_output_table_entries;
lut->num_input_channels = in_chan;
lut->num_output_channels = out_chan;
lut->num_clut_grid_points = grid_points;
lut->e00 = read_s15Fixed16Number(src, offset+12);
lut->e01 = read_s15Fixed16Number(src, offset+16);
lut->e02 = read_s15Fixed16Number(src, offset+20);
lut->e10 = read_s15Fixed16Number(src, offset+24);
lut->e11 = read_s15Fixed16Number(src, offset+28);
lut->e12 = read_s15Fixed16Number(src, offset+32);
lut->e20 = read_s15Fixed16Number(src, offset+36);
lut->e21 = read_s15Fixed16Number(src, offset+40);
lut->e22 = read_s15Fixed16Number(src, offset+44);
for (i = 0; i < (uint32_t)(lut->num_input_table_entries * in_chan); i++) {
if (type == LUT8_TYPE) {
lut->input_table[i] = uInt8Number_to_float(read_uInt8Number(src, offset + input_offset + i * entry_size));
} else {
lut->input_table[i] = uInt16Number_to_float(read_uInt16Number(src, offset + input_offset + i * entry_size));
}
}
clut_offset = offset + input_offset + lut->num_input_table_entries * in_chan * entry_size;
for (i = 0; i < clut_size * out_chan; i+=3) {
if (type == LUT8_TYPE) {
lut->clut_table[i+0] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 0));
lut->clut_table[i+1] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 1));
lut->clut_table[i+2] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 2));
} else {
lut->clut_table[i+0] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 0));
lut->clut_table[i+1] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 2));
lut->clut_table[i+2] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 4));
}
}
output_offset = clut_offset + clut_size * out_chan * entry_size;
for (i = 0; i < (uint32_t)(lut->num_output_table_entries * out_chan); i++) {
if (type == LUT8_TYPE) {
lut->output_table[i] = uInt8Number_to_float(read_uInt8Number(src, output_offset + i*entry_size));
} else {
lut->output_table[i] = uInt16Number_to_float(read_uInt16Number(src, output_offset + i*entry_size));
}
}
return lut;
}
static void read_rendering_intent(qcms_profile *profile, struct mem_source *src)
{
profile->rendering_intent = read_u32(src, 64);
switch (profile->rendering_intent) {
case QCMS_INTENT_PERCEPTUAL:
case QCMS_INTENT_SATURATION:
case QCMS_INTENT_RELATIVE_COLORIMETRIC:
case QCMS_INTENT_ABSOLUTE_COLORIMETRIC:
break;
default:
invalid_source(src, "unknown rendering intent");
}
}
qcms_profile *qcms_profile_create(void)
{
return calloc(sizeof(qcms_profile), 1);
}
/* build sRGB gamma table */
/* based on cmsBuildParametricGamma() */
static uint16_t *build_sRGB_gamma_table(int num_entries)
{
int i;
/* taken from lcms: Build_sRGBGamma() */
double gamma = 2.4;
double a = 1./1.055;
double b = 0.055/1.055;
double c = 1./12.92;
double d = 0.04045;
uint16_t *table = malloc(sizeof(uint16_t) * num_entries);
if (!table)
return NULL;
for (i=0; i<num_entries; i++) {
double x = (double)i / (num_entries-1);
double y, output;
// IEC 61966-2.1 (sRGB)
// Y = (aX + b)^Gamma | X >= d
// Y = cX | X < d
if (x >= d) {
double e = (a*x + b);
if (e > 0)
y = pow(e, gamma);
else
y = 0;
} else {
y = c*x;
}
// Saturate -- this could likely move to a separate function
output = y * 65535. + .5;
if (output > 65535.)
output = 65535;
if (output < 0)
output = 0;
table[i] = (uint16_t)floor(output);
}
return table;
}
static struct curveType *curve_from_table(uint16_t *table, int num_entries)
{
struct curveType *curve;
int i;
curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries);
if (!curve)
return NULL;
curve->type = CURVE_TYPE;
curve->count = num_entries;
for (i = 0; i < num_entries; i++) {
curve->data[i] = table[i];
}
return curve;
}
static uint16_t float_to_u8Fixed8Number(float a)
{
if (a > (255.f + 255.f/256))
return 0xffff;
else if (a < 0.f)
return 0;
else
return floorf(a*256.f + .5f);
}
static struct curveType *curve_from_gamma(float gamma)
{
struct curveType *curve;
int num_entries = 1;
curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries);
if (!curve)
return NULL;
curve->count = num_entries;
curve->data[0] = float_to_u8Fixed8Number(gamma);
curve->type = CURVE_TYPE;
return curve;
}
//XXX: it would be nice if we had a way of ensuring
// everything in a profile was initialized regardless of how it was created
//XXX: should this also be taking a black_point?
/* similar to CGColorSpaceCreateCalibratedRGB */
qcms_profile* qcms_profile_create_rgb_with_gamma_set(
qcms_CIE_xyY white_point,
qcms_CIE_xyYTRIPLE primaries,
float redGamma,
float greenGamma,
float blueGamma)
{
qcms_profile* profile = qcms_profile_create();
if (!profile)
return NO_MEM_PROFILE;
//XXX: should store the whitepoint
if (!set_rgb_colorants(profile, white_point, primaries)) {
qcms_profile_release(profile);
return INVALID_PROFILE;
}
profile->redTRC = curve_from_gamma(redGamma);
profile->blueTRC = curve_from_gamma(blueGamma);
profile->greenTRC = curve_from_gamma(greenGamma);
if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
qcms_profile_release(profile);
return NO_MEM_PROFILE;
}
profile->class_type = DISPLAY_DEVICE_PROFILE;
profile->rendering_intent = QCMS_INTENT_PERCEPTUAL;
profile->color_space = RGB_SIGNATURE;
profile->pcs = XYZ_SIGNATURE;
return profile;
}
qcms_profile* qcms_profile_create_rgb_with_gamma(
qcms_CIE_xyY white_point,
qcms_CIE_xyYTRIPLE primaries,
float gamma)
{
return qcms_profile_create_rgb_with_gamma_set(white_point, primaries, gamma, gamma, gamma);
}
qcms_profile* qcms_profile_create_rgb_with_table(
qcms_CIE_xyY white_point,
qcms_CIE_xyYTRIPLE primaries,
uint16_t *table, int num_entries)
{
qcms_profile* profile = qcms_profile_create();
if (!profile)
return NO_MEM_PROFILE;
//XXX: should store the whitepoint
if (!set_rgb_colorants(profile, white_point, primaries)) {
qcms_profile_release(profile);
return INVALID_PROFILE;
}
profile->redTRC = curve_from_table(table, num_entries);
profile->blueTRC = curve_from_table(table, num_entries);
profile->greenTRC = curve_from_table(table, num_entries);
if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
qcms_profile_release(profile);
return NO_MEM_PROFILE;
}
profile->class_type = DISPLAY_DEVICE_PROFILE;
profile->rendering_intent = QCMS_INTENT_PERCEPTUAL;
profile->color_space = RGB_SIGNATURE;
profile->pcs = XYZ_SIGNATURE;
return profile;
}
/* from lcms: cmsWhitePointFromTemp */
/* tempK must be >= 4000. and <= 25000.
* Invalid values of tempK will return
* (x,y,Y) = (-1.0, -1.0, -1.0)
* similar to argyll: icx_DTEMP2XYZ() */
static qcms_CIE_xyY white_point_from_temp(int temp_K)
{
qcms_CIE_xyY white_point;
double x, y;
double T, T2, T3;
// double M1, M2;
// No optimization provided.
T = temp_K;
T2 = T*T; // Square
T3 = T2*T; // Cube
// For correlated color temperature (T) between 4000K and 7000K:
if (T >= 4000. && T <= 7000.) {
x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
} else {
// or for correlated color temperature (T) between 7000K and 25000K:
if (T > 7000.0 && T <= 25000.0) {
x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
} else {