You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When using device_train_microbatch_size="auto", I get a CUDA OOM memory error that is not caught but I believe it should be.
The _is_cuda_oom method in trainer/trainer.py detects CUDA OOM errors using if 'CUDA out of memory' in str(e).
It seems the error I got has the message CUDA error: out of memory, so is not caught by the _is_cuda_oom error.
I suspect this is dependent on CUDA version; it has worked on one system with v12.1 but failed on another with v12.4.
Potential fixes:
Change _is_cuda_oom to use if 'out of memory' in str(e)
Change _is_cuda_oom to check for both CUDA out of memory and CUDA error: out of memory.
Happy to open an MR for either of the above fixes.
Environment
Where it failed:
---- COMPOSER ENV ----
Collecting system information...
---------------------------------
System Environment Report
Created: 2024-06-12 14:14:28 UTC
---------------------------------
PyTorch information
-------------------
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.2
Libc version: glibc-2.35
Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.10.217-205.860.amzn2.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 535.183.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 7
BogoMIPS: 4999.98
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke avx512_vnni
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 768 KiB (24 instances)
L1i cache: 768 KiB (24 instances)
L2 cache: 24 MiB (24 instances)
L3 cache: 35.8 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-47
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] onnx==1.16.1
[pip3] pytorch-ranger==0.1.1
[pip3] torch==2.3.0
[pip3] torch-optimizer==0.3.0
[pip3] torch-tb-profiler==0.4.3
[pip3] torchaudio==2.3.0
[pip3] torchlibrosa==0.1.0
[pip3] torchmetrics==1.3.2
[pip3] torchvision==0.18.0
[pip3] triton==2.3.0
[conda] Could not collect
Composer information
--------------------
Composer version: 0.22.0
Composer commit hash: None
Host processor model name: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
Host processor core count: 24
Number of nodes: 1
Accelerator model name: Tesla T4
Accelerators per node: 1
CUDA Device Count: 1
---- NVCC ----
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Thu_Mar_28_02:18:24_PDT_2024
Cuda compilation tools, release 12.4, V12.4.131
Build cuda_12.4.r12.4/compiler.34097967_0
Where it worked:
---- COMPOSER ENV ----
Collecting system information...
---------------------------------
System Environment Report
Created: 2024-06-12 13:59:33 UTC
---------------------------------
PyTorch information
-------------------
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.24.1
Libc version: glibc-2.35
Python version: 3.10.14 (main, Apr 12 2024, 10:51:19) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.10.192-183.736.amzn2.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: Tesla V100-SXM2-16GB
GPU 1: Tesla V100-SXM2-16GB
Nvidia driver version: 535.161.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.2
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.2
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.2
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.2
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.2
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.2
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.2
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
CPU family: 6
Model: 79
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 1
Stepping: 1
CPU max MHz: 3000.0000
CPU min MHz: 1200.0000
BogoMIPS: 4600.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single pti fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx xsaveopt
Hypervisor vendor: Xen
Virtualization type: full
L1d cache: 512 KiB (16 instances)
L1i cache: 512 KiB (16 instances)
L2 cache: 4 MiB (16 instances)
L3 cache: 45 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-31
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Versions of relevant libraries:
[pip3] flake8==7.0.0
[pip3] hs-infrastructure-flake8-plugins==0.2.0
[pip3] mypy==1.10.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] onnx==1.16.1
[pip3] pytorch-ranger==0.1.1
[pip3] torch==2.3.0
[pip3] torch-optimizer==0.3.0
[pip3] torch-tb-profiler==0.4.3
[pip3] torchaudio==2.3.0
[pip3] torchlibrosa==0.1.0
[pip3] torchmetrics==1.3.2
[pip3] torchvision==0.18.0
[pip3] triton==2.3.0
[conda] Could not collect
Composer information
--------------------
Composer version: 0.22.0
Composer commit hash: None
Host processor model name: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
Host processor core count: 16
Number of nodes: 1
Accelerator model name: Tesla V100-SXM2-16GB
Accelerators per node: 1
CUDA Device Count: 2
---- NVCC ----
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Mon_Apr__3_17:16:06_PDT_2023
Cuda compilation tools, release 12.1, V12.1.105
Build cuda_12.1.r12.1/compiler.32688072_0
The text was updated successfully, but these errors were encountered:
When using
device_train_microbatch_size="auto"
, I get a CUDA OOM memory error that is not caught but I believe it should be.The
_is_cuda_oom
method intrainer/trainer.py
detects CUDA OOM errors usingif 'CUDA out of memory' in str(e)
.It seems the error I got has the message
CUDA error: out of memory
, so is not caught by the_is_cuda_oom
error.I suspect this is dependent on CUDA version; it has worked on one system with v12.1 but failed on another with v12.4.
Potential fixes:
_is_cuda_oom
to useif 'out of memory' in str(e)
_is_cuda_oom
to check for bothCUDA out of memory
andCUDA error: out of memory
.Happy to open an MR for either of the above fixes.
Environment
Where it failed:
Where it worked:
The text was updated successfully, but these errors were encountered: