-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathapp.py
271 lines (224 loc) · 8.71 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import nmap
import sqlite3
import re
import openai
import hashlib
import requests
import jsonify
import docker
import atexit
import psutil
import os
from dotenv import load_dotenv
from contextlib import contextmanager
from flask import Flask, render_template
from flask_restful import Api, Resource
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
IMAGE_NAME = os.getenv("IMAGE_NAME")
BASE_PORT = os.getenv("BASE_PORT")
NUM_INSTANCES = os.getenv("NUM_INSTANCES")
model_engine = "gpt-3.5-turbo-0613"
app = Flask(__name__)
api = Api(app)
nm = nmap.PortScanner()
started_containers = []
last_used_instance = 0
client = docker.from_env()
@app.route('/', methods=['GET'])
def home():
return render_template("index.html")
@app.route('/doc', methods=['GET'])
def doc():
return render_template("doc.html")
@contextmanager
def get_db_connection():
db_file = 'auth_keys.db'
conn = sqlite3.connect(db_file)
try:
cursor = conn.cursor()
cursor.execute('''CREATE TABLE IF NOT EXISTS auth_keys (
user_id INT PRIMARY KEY NOT NULL,
auth_key TEXT NOT NULL,
unique_key TEXT NOT NULL);''')
conn.commit()
yield conn
finally:
conn.close()
def sanitize(input_string: str) -> str:
patterns_to_remove = [
r";",
r"'",
r'"',
r"\b(SELECT|UPDATE|DELETE|INSERT|DROP|ALTER|CREATE|TABLE|DATABASE)\b",
r"--",
r"\b(OR|AND)\b.{0,20}?=",
r"%"
]
sanitized_string = input_string
for pattern in patterns_to_remove:
sanitized_string = re.sub(
pattern, "", sanitized_string, flags=re.IGNORECASE)
return sanitized_string
@app.route('/register/<int:user_id>/<string:password>/<string:unique_key>')
def store_auth_key(user_id, password, unique_key):
with get_db_connection() as conn:
cursor = conn.cursor()
hash = hashlib.sha256()
hash.update(str(user_id).encode('utf-8'))
hash.update(password.encode('utf-8'))
hash.update(unique_key.encode('utf-8'))
auth_key = hash.hexdigest()[:20]
cursor.execute("SELECT 1 FROM auth_keys WHERE user_id = ?", (user_id,))
if cursor.fetchone():
return jsonify({"error": "User ID already exists"})
cursor.execute(
"INSERT INTO auth_keys (user_id, auth_key, unique_key) VALUES (?, ?, ?)",
(user_id, auth_key, unique_key)
)
conn.commit()
return auth_key
def authenticate(auth_key):
with get_db_connection() as conn:
cursor = conn.cursor()
cursor.execute(
"SELECT 1 FROM auth_keys WHERE auth_key = ?", (
sanitize(auth_key),)
)
return cursor.fetchone() is not None
def cleanup_containers():
client = docker.from_env()
for container_id in started_containers:
try:
container = client.containers.get(container_id)
container.stop()
container.remove()
print(f"Stopped and removed container {container_id}")
except Exception as e:
print(f"Error stopping/removing container {container_id}: {e}")
def deploy_docker_instances(image_name, start_port, num_instances):
client = docker.from_env()
for i in range(num_instances):
host_port = start_port + i
container_port = '5000/tcp'
port_bindings = {container_port: host_port}
container = client.containers.run(
image_name, detach=True, ports=port_bindings)
print(
f"Started container {container.short_id} on host port {host_port} mapped to container port 5000")
started_containers.append(container.id)
atexit.register(cleanup_containers)
def get_total_resource_usage():
total_memory_usage = 0
total_cpu_usage = 0
for container in client.containers.list():
stats = container.stats(stream=False)
memory_usage = stats['memory_stats']['usage']
total_memory_usage += memory_usage
cpu_delta = stats['cpu_stats']['cpu_usage']['total_usage'] - \
stats['precpu_stats']['cpu_usage']['total_usage']
system_delta = stats['cpu_stats']['system_cpu_usage'] - \
stats['precpu_stats']['system_cpu_usage']
if system_delta > 0.0 and cpu_delta > 0.0:
cpu_usage = (cpu_delta / system_delta) * \
len(stats['cpu_stats']['cpu_usage']['percpu_usage'])
total_cpu_usage += cpu_usage
return total_memory_usage, total_cpu_usage
@app.route('/checkup')
def monitor_and_manage_containers():
CLEAN_NEEDED = "NO"
total_memory_usage, total_cpu_usage = get_total_resource_usage()
total_available_memory = psutil.virtual_memory().total
total_available_cpu = psutil.cpu_count()
memory_usage_percent = (total_memory_usage / total_available_memory) * 100
cpu_usage_percent = (total_cpu_usage / total_available_cpu) * 100
print("Total Available CPU: {total_available_cpu}")
print("Total Available RAM: {total_available_memory}")
print("Total Usage CPU: {total_cpu_usage}")
print("Total Usage RAM: {total_memory_usage}")
print("Total Usage CPU %: {cpu_usage_percent}")
print("Total Usage RAM %: {memory_usage_percent}")
print(
f"Memory Usage: {memory_usage_percent}%, CPU Usage: {cpu_usage_percent}%")
if memory_usage_percent > 50 or cpu_usage_percent > 50:
cleanup_containers()
deploy_docker_instances(IMAGE_NAME, BASE_PORT, NUM_INSTANCES)
CLEAN_NEEDED = "YES"
return {
"Total Available CPU": f"{total_available_cpu}",
"Total Available RAM": f"{total_available_memory}",
"Total Usage CPU": f"{total_cpu_usage}",
"Total Usage RAM": f"{total_memory_usage}",
"Total Usage CPU %": f"{cpu_usage_percent}",
"Total Usage RAM %": f"{memory_usage_percent}",
"CLEANUP NEEDED": f"{CLEAN_NEEDED}",
}
def profile(auth, url, profile):
global last_used_instance
if not authenticate(auth):
return {"error": "Authentication failed"}
base_url = "http://127.0.0.1"
start_port = 5001
num_instances = 10
selected_instance = (last_used_instance + 1) % num_instances
last_used_instance = selected_instance
port = start_port + selected_instance
full_url = f"{base_url}:{port}/api/{profile}/{url}"
try:
response = requests.get(full_url)
if response.status_code == 200:
data = response.json()
d = str(data.get("scan", {}))
return AI(d)
else:
print(f"Error from server: {response.status_code}")
return {
"error": f"Server responded with status code {response.status_code}"
}
except requests.RequestException as e:
print(f"Request failed: {e}")
return {"error": "Request failed"}
def AI(analize: str) -> dict[str, any]:
prompt = f"""
Do a NMAP scan analysis on the provided NMAP scan information
The NMAP output must return in a JSON format accorging to the provided
output format. The data must be accurate in regards towards a pentest report.
The data must follow the following rules:
1) The NMAP scans must be done from a pentester point of view
2) The final output must be minimal according to the format given.
3) The final output must be kept to a minimal.
4) If a value not found in the scan just mention an empty string.
5) Analyze everything even the smallest of data.
6) Completely analyze the data provided and give a confirm answer using the output format.
The output format:
{{
"critical score": [""],
"os information": [""],
"open ports": [""],
"open services": [""],
"vulnerable service": [""],
"found cve": [""]
}}
NMAP Data to be analyzed: {analize}
"""
messages = [{"content": prompt, "role": "assistant"}]
response = openai.ChatCompletion.create(
model=model_engine,
messages=messages,
max_tokens=2500,
n=1,
stop=None,
)
response = response['choices'][0]['message']['content']
ai_output = {
"markdown": response
}
return ai_output
class ScanAPI(Resource):
def get(self, auth, url, scan_type):
return profile(
auth=auth,
profile=scan_type,
url=url
)
api.add_resource(ScanAPI, "/api/<string:scan_type>/<string:auth>/<string:url>")