-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
222 lines (189 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import gym
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from dqn import *
from sac import *
from utils import *
from config import config
from codecarbon import EmissionsTracker
tracker = EmissionsTracker()
tracker.start()
import os
import time
import warnings
warnings.filterwarnings('ignore')
os.environ["WANDB_SILENT"] = "true"
model_dict = {"DQN" : DQNAgent,
"VarDQN" : LossAttDQN,
"EnsembleDQN" : EnsembleDQN,
"BootstrapDQN" : RPFMaskEnsembleDQN,
"IV_EnsembleDQN" : IV_DQN,
"IV_BootstrapDQN" : IV_BootstrapDQN,
"BootstrapDQN" : RPFBootstrapDQN,
"IV_BootstrapDQN" : IV_RPFBootstrapDQN,
"IV_EnsembleDQN" : IV_DQN,
"IV_VarDQN" : IV_LossAttDQN,
"VarEnsembleDQN" : LakshmiBootstrapDQN,
"IV_VarEnsembleDQN" : IV_LakshmiBootstrapDQN,
"IV_DQN" : IV_LakshmiBootstrapDQN,
"SunriseDQN" : Sunrise_BootstrapDQN,
"Sunrise_VarEnsembleDQN" : Sunrise_LakshmiBootstrapDQN,
"UWACDQN" : UWAC_DQN,
"UWAC_VarEnsembleDQN" : UWAC_LakshmiBootstrapDQN,
"SAC" : SACTrainer,
"VarSAC" : VarSACTrainer,
"IV_VarSAC" : IV_VarSAC,
"EnsembleSAC" : EnsembleSAC,
"IV_EnsembleSAC" : IV_EnsembleSAC,
"VarEnsembleSAC" : VarEnsembleSAC,
"IV_SAC" : IV_VarEnsembleSAC,
"IV_VarEnsembleSAC" : IV_VarEnsembleSAC,
"SunriseSAC" : SunriseSAC,
"Sunrise_VarEnsembleSAC" : Sunrise_VarEnsembleSAC,
"UWACSAC" : UWACSAC,
"UWAC_VarEnsembleSAC" : UWAC_VarEnsembleSAC
}
parser = argparse.ArgumentParser(description="DQN options")
parser.add_argument("--env", type=str, default="LunarLander-v2",
help="Gym environment")
parser.add_argument("--model", type=str, choices=model_dict.keys(), required=True,
help="which RL algorithm to run??")
parser.add_argument("--lr", type=float, default=5e-4,
help="Learning rate for SGD update")
parser.add_argument("--batch_size", type=int, default=64,
help="batch size")
parser.add_argument("--eff_batch_size", type=int, default=64,
help="effective batch size")
parser.add_argument("--buffer_size", type=int, default=int(1e5),
help="Replay Buffer Size")
parser.add_argument("--num_nets", type=int, default=5,
help="Number of Qnets in the ensemble DQN")
parser.add_argument("--gamma", type=float, default=0.99,
help="Discount Factor")
parser.add_argument("--tau", type=float, default=1e-3,
help="Target Network Update weight")
parser.add_argument("--mean_target", action="store_true",
help="whether to use mean Target for Ensemble Networks")
parser.add_argument("--update_every", type=int, default=1,
help="Updating Target Network every x episodes")
parser.add_argument("--log_dir", type=str, default="./logs/",
help="location to save models and metadata")
parser.add_argument("--xi", type=float, default=1.,
help="xi for variance stabilization")
parser.add_argument("--eps_frac", type=float, default=1.,
help="EPS multiplicative factor")
parser.add_argument("--env_seed", type=int, default=0,
help="seed for the gym environment")
parser.add_argument("--net_seed", type=int, default=0,
help="seed for the neural networks")
parser.add_argument("--num_episodes", type=int, default=210,
help="Total number of episodes")
parser.add_argument("--exp", type=str, default="S",
help="Experiment category")
parser.add_argument("--tag", type =str, default="",
help="Tag for wandb logs")
parser.add_argument("--comment", default="No Comment!",
help="add details about what this exp is trying to do ")
parser.add_argument("--mask_prob", default=1.0, type=float,
help="how samples are masked to generate diversity across the ensemble")
parser.add_argument("--select_action", default="mean",type=str, choices=["mean", "vote"],
help="select action for ensemble based on mean or voting")
parser.add_argument("--mask", default="bernoulli", type=str, choices=["sampling", "bernoulli"],
help="Sampling a fixed effective batch from a larger batch or using bernoulli masks like BootstrapDQN ")
parser.add_argument("--eps_decay", default=0.99, type=float,
help="Exploration decay rate")
parser.add_argument("--dynamic_xi", type=str2bool, nargs='?',
const=True, default=False,
help="whether to use calculated eps using minimum effective batch size")
parser.add_argument("--eps_type", type=str, choices=["eps", "mebs", "eps_frac"], default="eps",
help="how to calculate epsilon for variance stabilization")
parser.add_argument("--minimal_eff_bs", type=float, default=32,
help="Minimal Effective Batch Size for calculating Policy Improvement Noise")
parser.add_argument("--minimal_eff_bs_ratio", type=float, default=1.0,
help="Minimal Effective Batch Ratio for calculating Policy Improvement Noise")
parser.add_argument("--prior_scale", default=10.0, type=float,
help="Prior Scale for RPF ")
parser.add_argument("--loss_att_weight", type=float, default=1.0,
help="Weight of loss attenuation in loss function")
parser.add_argument("--test_every", type=int, default=1,
help="Test every x episodes")
parser.add_argument("--mcd_prob", type=float, default=0.5,
help="Dropout probability for MC Dropout based DQN models")
parser.add_argument("--mcd_samples", type=int, default=5,
help="Number of output Q-values to generate using MC Dropout")
parser.add_argument("--same_seed", type=int, default=-1,
help="if we want to use same seed for env and net (analysis and sweeps)")
parser.add_argument("--goal_score", type=int,default=200,
help="moving average score / 100 at which environment is considered solved")
parser.add_argument("--sunrise_temp", type=float, default=20.0,
help="sunrise temperature for weighted Bellman backup")
parser.add_argument("--exploration", type=str, choices=['ts', 'e-greedy', 'bootstrap', 'ucb'], default='e-greedy',
help='which exploration technique to use ? (Thomson Sampling(ts), Epsilon-greedy(e-greedy), Bootstrap or UCB exploration')
parser.add_argument("--ucb_lambda", type=float, default=0.0,
help="Lambda to be used for UCB exploration")
parser.add_argument("--end_reward", type=float, default=0.0,
help="Constant added at the end of an episode to shift the return")
parser.add_argument("--burn_in_density", type=int, default=10000,
help="Update Density every N steps")
parser.add_argument("--config", default=None,
help="configuration to use")
parser.add_argument('--uwac_beta', default=0.5, type=float,
help="beta factor for down-weighing")
parser.add_argument('--clip_bottom', default=0.0, type=float,
help="clip the down-weighing factor by minimum")
parser.add_argument('--clip_top', default=1.5, type=float,
help="clip the down-weighing factor by maximum")
parser.add_argument("--use_exp_weight", type=str2bool, nargs='?',
const=True, default=True,
help="Use Exponential down-weighing for Q function and/or Policy")
parser.add_argument('--num_sampled_actions', type=int, default=5,
help="Number of actions to sample to calculate variance in the policy")
parser.add_argument("--soft_target_tau", default=5e-3, type=float,
help="Soft Target TAU for target network update")
parser.add_argument("--policy_lr", default=3e-4, type=float,
help="learning rate for actor updates")
parser.add_argument("--qf_lr", default=3e-4, type=float,
help="learning rate for critic updates")
parser.add_argument("--use_bsuite", type=str2bool, nargs='?',
const=True, default=False,
help="whether to use calculated eps using minimum effective batch size")
# architecture
parser.add_argument('--num_layer', default=2, type=int)
parser.add_argument('--save_freq', default=0, type=int)
target_type = ["", "_mean_target"]
opt = parser.parse_args()
try:
config_env = config[opt.env][opt.model]
for key in config_env.keys():
setattr(opt, key, config_env[key])
except:
pass
if opt.same_seed >= 0:
opt.net_seed = opt.same_seed
opt.env_seed = opt.same_seed
# Inflate batch size when using Masking in Ensemble Methods
# to ensure same effective batch size.
opt.batch_size = int(opt.eff_batch_size / opt.mask_prob)
opt.minimal_eff_bs = int(opt.minimal_eff_bs_ratio * opt.eff_batch_size)
print(vars(opt))
if "Mean_Target" in opt.model:
opt.mean_target = True
if __name__ == "__main__":
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
try:
os.makedirs(opt.log_dir)
except:
pass
Model = model_dict[opt.model]
if "sac" not in opt.model.lower():
env = gym.make(opt.env)
env.seed(opt.env_seed)
agent = Model(env, opt, device=device)
agent.train(n_episodes=opt.num_episodes, eps_decay=opt.eps_decay)
else:
run_sac(Model, opt)
tracker.stop()