-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_gan_noisemodel.py
480 lines (345 loc) · 19.3 KB
/
train_gan_noisemodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import sys, os, glob
sys.path.append("../.")
sys.path.append("../data/")
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.nn import MSELoss, L1Loss
from torch.optim import Adam
from PIL import Image
import argparse, json, torchvision
import scipy.io
import helper.canon_supervised_dataset as dset
import helper.gan_helper_fun as gh
import lpips
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import timef
def find_free_port():
""" https://stackoverflow.com/questions/1365265/on-localhost-how-do-i-pick-a-free-port-number """
import socket
from contextlib import closing
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
s.bind(('', 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return str(s.getsockname()[1])
def main():
parser = argparse.ArgumentParser(description='Gan noise model training options.')
parser.add_argument('--network', default='Unet', help = 'Options: Unet, Unet_cat, noUnet, Unet_first')
parser.add_argument('--noiselist', default='shot_read_uniform_row1_rowt_fixed1_periodic',
help = 'Specify the type of noise to include. \
Options: read, shot, uniform, row1, rowt, fixed1, learnedfixed, periodic')
parser.add_argument('--crop_size', default=256, type = int)
parser.add_argument('--dataset', default='color_gray', help = 'Choose which dataset to use. Options: gray, color')
parser.add_argument('--discriminator_loss', default='fourier',
help = 'Choose generator loss. Options: mixed, fourier, real, mean')
parser.add_argument('--notes', default= 'yournamehere')
parser.add_argument('--generator_loss', default='lpips', help = 'Choose generator loss. Default: lpips')
parser.add_argument('--split_into_patches', default='patches_after')
parser.add_argument('--save_path', default = '../saved_models/', help='Specify where to save checkpoints during training')
parser.add_argument('--unet_opts', default='residualFalse_conv_tconv_selu')
parser.add_argument('--num_iter', default= 500000)
parser.add_argument('--device', default= 'cuda:0')
parser.add_argument('--lr', default = 0.0002, type=float)
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument('--batch_size', default = 1, type=int)
parser.add_argument('-n', '--nodes', default=1,
type=int, metavar='N')
parser.add_argument('-g', '--gpus', default=2, type=int,
help='number of gpus per node')
parser.add_argument('-nr', '--nr', default=0, type=int,
help='ranking within the nodes')
parser.add_argument('--epochs', default=2, type=int,
metavar='N',
help='number of total epochs to run')
args = parser.parse_args()
args.world_size = args.gpus * args.nodes
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = find_free_port()
torch.cuda.empty_cache()
folder_name = args.save_path + 'noisemodel' +"_".join([str(i) for i in list(args.__dict__.values())[0:6]])+'/'
if not os.path.exists(folder_name):
os.makedirs(folder_name)
with open(folder_name + 'args.txt', 'w') as f:
json.dump(args.__dict__, f, indent=2)
args.folder_name = folder_name
mp.spawn(train, nprocs=args.gpus, args=(args,))
def get_dataset(args):
composed_transforms = torchvision.transforms.Compose([dset.ToTensor2(), dset.AddFixedNoise(), dset.RandCrop_gen(shape = (args.crop_size,args.crop_size))])
composed_transforms2 = torchvision.transforms.Compose([dset.ToTensor2(), dset.FixedCrop_gen(shape = (args.crop_size,args.crop_size))])
dataset_list = []
dataset_list_test = []
if 'gray' in args.dataset:
filepath_noisy = '../data/paired_data/graybackground_mat/'
dataset_train_gray = dset.Get_sample_noise_batch(filepath_noisy, composed_transforms, fixed_noise = False)
dataset_list.append(dataset_train_gray)
if 'color' not in args.dataset:
all_files_mat_test = glob.glob('../data/paired_data/stillpairs_mat/*.mat')[40:]
dataset_test_real = dset.Get_sample_batch(all_files_mat_test, composed_transforms)
dataset_list_test.append(dataset_test_real)
if 'newcalib' in args.dataset:
filepath_noisy = '../data/paired_data/colorbackground_mat/'
filepath_noisy1 = glob.glob(filepath_noisy + '*')[1:-2]
filepath_noisy2 = [glob.glob(filepath_noisy + '*')[0], glob.glob(filepath_noisy + '*')[-1]]
dataset_train_gray2 = dset.Get_sample_noise_batch_new(filepath_noisy1, composed_transforms)
dataset_test_gray2 = dset.Get_sample_noise_batch_new(filepath_noisy2, composed_transforms)
dataset_list.append(dataset_train_gray2)
dataset_list_test.append(dataset_test_gray2)
if 'color' in args.dataset:
all_files_mat = glob.glob('../data/paired_data/stillpairs_mat/*.mat')[0:40]
all_files_mat_test = glob.glob('../data/paired_data/stillpairs_mat/*.mat')[40:]
dataset_train_real = dset.Get_sample_batch(all_files_mat, composed_transforms)
dataset_test_real = dset.Get_sample_batch(all_files_mat_test, composed_transforms2)
dataset_list.append(dataset_train_real)
dataset_list_test.append(dataset_test_real)
if len(dataset_list)>1:
dataset_list = torch.utils.data.ConcatDataset(tuple(dataset_list))
dataset_list_test = torch.utils.data.ConcatDataset(tuple(dataset_list_test))
else:
dataset_list= dataset_list[0]
dataset_list_test = dataset_list_test[0]
return dataset_list, dataset_list_test
def get_model(args, device):
from models.unet import Unet
if args.network == 'noUnet':
model = None
else:
if args.network == 'Unet_cat':
in_channels = 8
else:
in_channels = 4
if 'newunet' in args.network:
import models.fastdvdnet as fdvd
model = fdvd.DenBlockUnet(num_input_frames=1).to(args.device)
model.weight_init
for param in model.parameters():
param.data = param.data*1e-6
else:
res_opt = bool(args.unet_opts.split('_')[0].split('residual')[-1])
model = Unet(n_channel_in=in_channels,
n_channel_out=4,
residual=res_opt,
down=args.unet_opts.split('_')[1],
up=args.unet_opts.split('_')[2],
activation=args.unet_opts.split('_')[3])
if args.discriminator_loss == 'mean' or args.discriminator_loss == 'complex' or args.discriminator_loss == 'mixed':
disc_channels = 8
else:
disc_channels = 4
# old version:
# discriminator = gh.DiscriminatorS2d().to(args.device)
discriminator = gh.DiscriminatorS2d_sig(channels = disc_channels)
# old version:
#generator = gh.NoiseGenerator2d3d(net = model, unet_opts = args.network, add_fixed = args.addfixed)
generator = gh.NoiseGenerator2d3d_distributed_ablation(net = model, unet_opts = args.network, noise_list = args.noiselist,
device = device)
return generator, discriminator
def define_loss(args, gpu):
print('using lpips loss')
loss_fn_alex = lpips.LPIPS(net='alex').to(gpu)
def gen_loss(in1, in2):
total_loss = 0
if in1.shape[1]==8:
total_loss+=torch.mean(loss_fn_alex(in1[:,0:3],
in2[:,0:3],0,1))
total_loss+=torch.mean(loss_fn_alex(in1[:,4:7],
in2[:,4:7],0,1))
else:
total_loss+=torch.mean(loss_fn_alex(in1[:,0:3],
in2[:,0:3],0,1))
return total_loss
return gen_loss, loss_fn_alex
def train(gpu, args):
print('entering training function')
print(args.nr, args.gpus, gpu, args.world_size)
rank = args.nr * args.gpus + gpu
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=args.world_size,
rank=rank)
print('loading model')
generator, discriminator = get_model(args, gpu)
print('put on GPU', gpu)
torch.cuda.set_device(gpu)
generator.cuda(gpu)
discriminator.cuda(gpu)
folder_name = args.folder_name
batch_size = args.batch_size
gen_loss, loss_fn_alex = define_loss(args, gpu)
optimizer_G = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(args.b1, args.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=args.lr, betas=(args.b1, args.b2))
# Wrap the model
generator = nn.parallel.DistributedDataParallel(generator,
device_ids=[gpu], find_unused_parameters=True)
# Wrap the model
discriminator = nn.parallel.DistributedDataParallel(discriminator,
device_ids=[gpu], find_unused_parameters=True)
# Set up dataset
dataset_list, dataset_list_test = get_dataset(args)
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset_list,
num_replicas=args.world_size,
rank=rank)
train_loader = torch.utils.data.DataLoader(dataset=dataset_list,
batch_size=batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
sampler=train_sampler)
test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_list_test,
num_replicas=args.world_size,
rank=rank)
test_loader = torch.utils.data.DataLoader(dataset=dataset_list_test,
batch_size=batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
sampler=test_sampler)
if args.split_into_patches == 'patches_before':
split_patches = True
else:
split_patches = False
## WGAN-GP
n_critic = 5
lambda_gp = 10
num_epochs = 5000
G_losses = []
D_losses = []
kld_list = []
real_list = []
fake_list = []
best_kld = 1e6
for epoch in range(0,num_epochs):
for i, sample in enumerate(train_loader):
noisy_raw = torch.transpose(sample['noisy_input'],0, 2).squeeze(2).to(gpu)
clean_raw = torch.transpose(sample['gt_label_nobias'],0, 2).squeeze(2).to(gpu)
generator.indices = sample['rand_inds']
# -----------------
# Train Discriminator
# -----------------
## Train with batch
optimizer_D.zero_grad()
# Generator fake noisy images
gen_noisy = generator(clean_raw, split_patches)
if args.discriminator_loss == 'mean':
gen_mean = torch.mean(gen_noisy,0).unsqueeze(0)
real_mean = torch.mean(noisy_raw,0).unsqueeze(0)
gen_noisy = torch.cat((gen_mean.repeat(16,1,1,1), gen_noisy),1)
noisy_raw = torch.cat((real_mean.repeat(16,1,1,1), noisy_raw),1)
if split_patches == False:
gen_noisy = gh.split_into_patches2d(gen_noisy).to(gpu)
real_noisy = gh.split_into_patches2d(noisy_raw).to(gpu)
clean = gh.split_into_patches2d(clean_raw).to(gpu)
if 'fourier' in args.discriminator_loss:
#print('using fourier loss for discriminator')
real_noisy = torch.abs(torch.fft.fftshift(torch.fft.fft2(real_noisy, norm="ortho")))
gen_noisy = torch.abs(torch.fft.fftshift(torch.fft.fft2(gen_noisy, norm="ortho")))
elif 'mixed' in args.discriminator_loss:
#print('using fourier + real loss for discriminator')
real_noisy1 = torch.abs(torch.fft.fftshift(torch.fft.fft2(real_noisy, norm="ortho")))
gen_noisy1 = torch.abs(torch.fft.fftshift(torch.fft.fft2(gen_noisy, norm="ortho")))
real_noisy = torch.cat((real_noisy, real_noisy1),1)
gen_noisy = torch.cat((gen_noisy, gen_noisy1),1)
elif 'complex' in args.discriminator_loss:
#print('using fourier complex loss for discriminator')
real_noisy1 = torch.fft.fftshift(torch.fft.fft2(real_noisy, norm="ortho"))
gen_noisy1 = torch.fft.fftshift(torch.fft.fft2(gen_noisy, norm="ortho"))
real_noisy = torch.cat((torch.real(real_noisy1), torch.imag(real_noisy1)),1)
gen_noisy = torch.cat((torch.real(gen_noisy1), torch.imag(gen_noisy1)),1)
real_validity = discriminator(real_noisy)
fake_validity = discriminator(gen_noisy)
# Gradient penalty
gradient_penalty = gh.compute_gradient_penalty2d(discriminator, real_noisy.data, gen_noisy.data)
# Adversarial loss
d_loss = -torch.mean(real_validity) + torch.mean(fake_validity) + lambda_gp * gradient_penalty
d_loss.backward()
optimizer_D.step()
optimizer_G.zero_grad()
# Train the generator every n_critic steps
if i % n_critic == 0:
# -----------------
# Train Generator
# -----------------
# Generate a batch of images
fake_imgs = generator(clean_raw, split_patches)
if args.discriminator_loss == 'mean':
fake_imgs_mean = torch.mean(fake_imgs,0).unsqueeze(0)
fake_imgs = torch.cat((fake_imgs_mean.repeat(16,1,1,1), fake_imgs),1)
# Loss measures generator's ability to fool the discriminator
# Train on fake images
if split_patches == False:
fake_imgs = gh.split_into_patches2d(fake_imgs).to(gpu)
if 'fourier' in args.discriminator_loss:
#print('using fourier loss for discriminator')
fake_imgs = torch.abs(torch.fft.fftshift(torch.fft.fft2(fake_imgs, norm="ortho")))
elif 'mixed' in args.discriminator_loss:
#print('using mixed loss for discriminator')
fake_imgs1 = torch.abs(torch.fft.fftshift(torch.fft.fft2(fake_imgs, norm="ortho")))
fake_imgs = torch.cat((fake_imgs, torch.abs(fake_imgs1)), 1)
elif 'complex' in args.discriminator_loss:
#print('using mixed loss for discriminator')
fake_imgs1 = torch.fft.fftshift(torch.fft.fft2(fake_imgs, norm="ortho"))
fake_imgs = torch.cat((torch.real(fake_imgs1), torch.imag(fake_imgs1)),1)
fake_validity = discriminator(fake_imgs)
g_loss = -torch.mean(fake_validity)
if args.generator_loss == 'lpips':
g_loss += gen_loss(fake_imgs, real_noisy)
g_loss.backward()
optimizer_G.step()
print(
"[Epoch %d/%d] [Batch %d] [D loss: %f] [G loss: %f]"
% (epoch, num_epochs, i, d_loss.item(), g_loss.item())
)
gen1 = (gen_noisy).detach().cpu().numpy()
real1 = (real_noisy).detach().cpu().numpy()
kld_val = gh.cal_kld(gen1, real1)
print('KLD', kld_val)
G_losses.append(g_loss.item())
D_losses.append(d_loss.item())
kld_list.append(kld_val)
real_list.append(torch.mean(real_validity).item())
fake_list.append(torch.mean(fake_validity).item())
# Check if Best KLD value
if epoch % 5 == 0:
tot_kld = 0
for i, sample in enumerate(test_loader):
with torch.no_grad():
noisy_raw = torch.transpose(sample['noisy_input'],0, 2).squeeze(2)
clean_raw = torch.transpose(sample['gt_label_nobias'],0, 2).squeeze(2).to(gpu)
generator.indices = [10,10]
gen_noisy = generator(clean_raw, split_patches)
if split_patches == False:
gen_noisy = gh.split_into_patches2d(gen_noisy).to(gpu)
real_noisy = gh.split_into_patches2d(noisy_raw).to(gpu)
clean = gh.split_into_patches2d(clean_raw).to(gpu)
gen1 = (gen_noisy).detach().cpu().numpy()
real1 = (real_noisy).detach().cpu().numpy()
kld_val = gh.cal_kld(gen1, real1)
tot_kld += kld_val
print('Total KLD value:', tot_kld)
if tot_kld < best_kld:
best_kld = tot_kld
print('saving best')
checkpoint_name = folder_name + f'bestgenerator{epoch}_KLD{best_kld:.5f}.pt'
torch.save(generator.state_dict(), checkpoint_name)
checkpoint_name = folder_name + f'bestdiscriminatort{epoch}_KLD{best_kld:.5f}.pt'
torch.save(discriminator.state_dict(), checkpoint_name)
if gpu==0:
print('saving checkpoint')
out_plt = gen_noisy.cpu().detach().numpy()[0].transpose(1,2,0)[...,0:3]
checkpoint_name = folder_name + f'generatorcheckpoint{epoch}_Gloss{G_losses[-1]:.5f}_Dloss{np.round(D_losses[-1], 5)}.pt'
torch.save(generator.state_dict(), checkpoint_name)
checkpoint_name = folder_name + f'discriminatorcheckpoint{epoch}_Gloss{G_losses[-1]:.5f}_Dloss{np.round(D_losses[-1], 5)}.pt'
torch.save(discriminator.state_dict(), checkpoint_name)
save_name = folder_name + f'testimage{epoch}.jpg'
Image.fromarray((np.clip(out_plt,0,1) * 255).astype(np.uint8)).save(save_name)
scipy.io.savemat(folder_name + 'losses.mat',
{'G_losses':G_losses,
'D_losses':D_losses,
'kld_list':kld_list,
'real_list':real_list,
'fake_list':fake_list})
if __name__ == '__main__':
main()