-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwideresnet.py
128 lines (116 loc) · 5.61 KB
/
wideresnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, dropRate=0.0, activation='ReLU', softplus_beta=1):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_planes)
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
if activation == 'ReLU':
self.relu1 = nn.ReLU(inplace=True)
self.relu2 = nn.ReLU(inplace=True)
print('R')
elif activation == 'Softplus':
self.relu1 = nn.Softplus(beta=softplus_beta, threshold=20)
self.relu2 = nn.Softplus(beta=softplus_beta, threshold=20)
print('S')
elif activation == 'GELU':
self.relu1 = nn.GELU()
self.relu2 = nn.GELU()
print('G')
elif activation == 'ELU':
self.relu1 = nn.ELU(alpha=1.0, inplace=True)
self.relu2 = nn.ELU(alpha=1.0, inplace=True)
print('E')
self.droprate = dropRate
self.equalInOut = (in_planes == out_planes)
self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
padding=0, bias=False) or None
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
return torch.add(x if self.equalInOut else self.convShortcut(x), out)
class NetworkBlock(nn.Module):
def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0, activation='ReLU', softplus_beta=1):
super(NetworkBlock, self).__init__()
self.activation = activation
self.softplus_beta = softplus_beta
self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)
def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
layers = []
for i in range(int(nb_layers)):
layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate,
self.activation, self.softplus_beta))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(nn.Module):
def __init__(self, depth=34, num_classes=10, widen_factor=10, dropRate=0.0, normalize=False, activation='ReLU', softplus_beta=1):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert ((depth - 4) % 6 == 0)
n = (depth - 4) / 6
block = BasicBlock
self.normalize = normalize
#self.scale = scale
# 1st conv before any network block
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1,
padding=1, bias=False)
# 1st block
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate, activation=activation, softplus_beta=softplus_beta)
# 1st sub-block
self.sub_block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate, activation=activation, softplus_beta=softplus_beta)
# 2nd block
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate, activation=activation, softplus_beta=softplus_beta)
# 3rd block
self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate, activation=activation, softplus_beta=softplus_beta)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(nChannels[3])
if activation == 'ReLU':
self.relu = nn.ReLU(inplace=True)
elif activation == 'Softplus':
self.relu = nn.Softplus(beta=softplus_beta, threshold=20)
elif activation == 'GELU':
self.relu = nn.GELU()
elif activation == 'ELU':
self.relu = nn.ELU(alpha=1.0, inplace=True)
print('Use activation of ' + activation)
if self.normalize:
self.fc = nn.Linear(nChannels[3], num_classes, bias = False)
else:
self.fc = nn.Linear(nChannels[3], num_classes)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear) and not self.normalize:
m.bias.data.zero_()
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
if self.normalize:
out = F.normalize(out, p=2, dim=1)
for _, module in self.fc.named_modules():
if isinstance(module, nn.Linear):
module.weight.data = F.normalize(module.weight, p=2, dim=1)
return self.fc(out)