-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeography.py
169 lines (156 loc) · 6.04 KB
/
geography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import pandas as pd
from dataclasses import dataclass, field
def map_country(x) -> str:
return {
'CZECH REPUBLIC': 'CZECHIA',
'CONGO (DEMOCRATIC REPUBLIC)': 'CONGO, DEM. REP.',
'CONGO, THE DEMOCRATIC REPUBLIC OF THE': 'CONGO, DEM. REP.',
'CONGO (DEMOCRATIC REPUBLIC OF)': 'CONGO, DEM. REP.',
'DEMOCRATIC REPUBLIC OF THE CONGO': 'CONGO, DEM. REP.',
'CONGO (BRAZZAVILLE)': 'CONGO, REP.',
'CONGO': 'CONGO, REP.',
'REPUBLIC OF THE CONGO': 'CONGO, REP.',
'HOLY SEE': 'ITALY',
'HOLY SEE (VATICAN CITY STATE)': 'ITALY',
'VATICAN': 'ITALY',
'LIBYAN ARAB JAMAHIRIYA': 'LIBYA',
'TANZANIA, UNITED REPUBLIC OF': 'TANZANIA',
'KOREA, REPUBLIC OF': 'KOREA, REP.',
'KOREA (SOUTH)': 'KOREA, REP.',
'SOUTH KOREA': 'KOREA, REP.',
'KOREA, DEMOCRATIC PEOPLE\'S REPUBLIC OF': 'KOREA, DEM. PEOPLE\'S REP.',
'KOREA (NORTH)': 'KOREA, DEM. PEOPLE\'S REP.',
'NORTH KOREA': 'KOREA, DEM. PEOPLE\'S REP.',
'TAIWAN, PROVINCE OF CHINA': 'TAIWAN, CHINA',
'TAIWAN': 'TAIWAN, CHINA',
'MACAO S.A.R.': 'CHINA',
'HONG KONG S.A.R.': 'CHINA',
'MACAO': 'CHINA',
'MACAO SAR': 'CHINA',
'HONG KONG SAR': 'CHINA',
'MOLDOVA, REPUBLIC OF': 'MOLDOVA',
'BRUNEI': 'BRUNEI DARUSSALAM',
'CÔTE D\'IVOIRE': 'CÔTE D’IVOIRE',
'COTE D\'IVOIRE': 'CÔTE D’IVOIRE',
'LAO PEOPLE\'S DEMOCRATIC REPUBLIC': 'LAO PDR',
'LAOS': 'LAO PDR',
'NERTHERLANDS': 'NETHERLANDS',
'MACEDONIA': 'NORTH MACEDONIA',
'FORMER YUGOSLAV REPUBLIC OF MACEDONIA': 'NORTH MACEDONIA',
'RUSSIA': 'RUSSIAN FEDERATION',
'TURKEY': 'TÜRKIYE',
'VIET NAM': 'VIETNAM',
'SYRIA': 'SYRIAN ARAB REPUBLIC',
'USA': 'UNITED STATES',
'UNITED STATES OF AMERICA': 'UNITED STATES',
'EGYPT': 'EGYPT, ARAB REP.',
'IRAN': 'IRAN, ISLAMIC REP.',
'IRAN, ISLAMIC REPUBLIC OF': 'IRAN, ISLAMIC REP.',
'SLOVAKIA': 'SLOVAK REPUBLIC',
'SAINT LUCIA': 'ST. LUCIA',
'VENEZUELA': 'VENEZUELA, RB',
'KYRGYZSTAN': 'KYRGYZ REPUBLIC',
'PALESTINIAN AUTHORITY': 'WEST BANK AND GAZA',
'PALESTINE': 'WEST BANK AND GAZA',
'CAPE VERDE': 'CABO VERDE',
'SAO TOME AND PRINCIPE': 'SÃO TOMÉ AND PRÍNCIPE',
'YEMEN': 'YEMEN, REP.',
'BURMA': 'MYANMAR',
'AUSTRILIA': 'AUSTRALIA'
}.get(x, x)
def map_city(x) -> str:
return {
'YAONDE': 'YAOUNDE',
'VITSYEBSK': 'VITEBSK',
'BANDAR SERI BEGWAN': 'BANDAR SERI BEGAWAN',
'GHIROKASTER': 'GJIROKASTER',
'CIDADE DA PRAIA': 'PRAIA',
'MIAMI, FL': 'MIAMI',
'NEW YORK, NY': 'NEW YORK',
'SAN FRANCISCO': 'SAN FRANCISCO',
'CHICAGO, IL': 'CHICAGO',
'HOUSTON, TX': 'HOUSTON',
'LOS ANGELES, CA': 'LOS ANGELES',
'BOSTON, MA': 'BOSTON',
'DETROIT, MI': 'DETROIT',
'NEWARK, NJ': 'NEWARK',
'TAMPA, FL': 'TAMPA',
'NEW BEDFORD, MA': 'NEW BEDFORD',
'CLEVELAND, OH': 'CLEVELAND',
'VINNYTSYA': 'VINNYTSIA',
'WILLEMSTAD (CURACAO)': 'WILLEMSTAD',
'BELEM, PA': 'BELEM',
'SAN FRANCISCO, CA': 'SAN FRANCISCO',
'KABUl': 'KABUL',
'ANDORRA-LA-VELLA': 'ANDORRA LA VELLA',
'ROSARIO (Santa Fé)': 'ROSARIO - SANTA FE',
'BELÉM': 'BELEM',
'SALVADOR-BAHIA': 'SALVADOR DE BAHIA',
'SANTIAGO DE CHILE': 'SANTIAGO',
'GUANGZHOU (CANTON)': 'GUANGZHOU',
'ADDIS ABEBA': 'ADDIS ABABA',
'TBILISSI': 'TBILISI',
'PORT-AU-PRINCE': 'PORT AU PRINCE',
'BÉKÉSCSABA': 'BEKESCSABA',
'BAGDAD': 'BAGHDAD',
'OSAKA-KOBE': 'OSAKA',
'KUWAIT': 'KUWAIT CITY',
'LUXEMBURG': 'LUXEMBOURG',
'FES': 'FEZ',
'MARRAKECH': 'MARRAKESH',
'TANGER': 'TANGIER',
'POINTE-NOIRE': 'POINTE NOIRE',
'TIMIȘOARA': 'TIMISOARA',
'NOVOROSSIISK': 'NOVOROSSIYSK',
'NOVOROSSISK': 'NOVOROSSIYSK',
'ST. PETERSBURG': 'ST PETERSBURG',
'JEDDA': 'JEDDAH',
'BELGRAD': 'BELGRADE',
'CAPETOWN': 'CAPE TOWN',
'VALENCIA (SPAIN)': 'VALENCIA',
'DAR-ES-SALAAM': 'DAR ES SALAAM',
'PORT-OF-SPAIN': 'PORT OF SPAIN',
'CHERNIVITSI': 'CHERNIVTSI',
'KIEV': 'KYIV',
'LVOV': 'LVIV',
'ODESSA': 'ODESA',
'SEBASTOPOL': 'SEVASTOPOL',
'VINNITSA': 'VINNYTSIA',
'ATLANTA, GA': 'ATLANTA',
'PHILADELPHIA, PA': 'PHILADELPHIA',
'SAN JUAN (PORT RICO)': 'SAN JUAN',
'SAN JUAN, PR': 'SAN JUAN',
'WASHINGTON, DC': 'WASHINGTON',
'VATICAN CITY (ROME)': 'VATICAN CITY',
'HO CHI MINH': 'HO-CHI MINH CITY',
'SANA\'A': 'SANAA',
'SANA \'A': 'SANAA'
}.get(x, x)
@dataclass
class Country:
code: str
name: str
region: str
income_group: str
@dataclass
class CountryList:
filepath: str = 'input/worldbank-classification-2023.xlsx'
countries: list[Country] = field(default_factory=list)
def load(self):
df = pd.read_excel(self.filepath,0)
df.apply(lambda x: self.add_country(x), axis=1)
def add_country(self, x):
if pd.isna(x['Economy']) or pd.isna(x['Code']) or pd.isna(x['Region']):
return
income_group = str(x['Income group'])
if str(x['Income group']) == 'Venezuela, RB':
income_group = 'Upper middle income'
self.countries.append(Country(str(x['Code']), str(x['Economy']), str(x['Region']), income_group))
def get(self, name):
name = name.strip().upper()
name = map_country(name)
try:
c = next(x for x in self.countries if x.name.upper() == name)
return c
except StopIteration:
raise ValueError('Not found: ' + name)