-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbdg.py
177 lines (148 loc) · 5.54 KB
/
bdg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import networkx as nx
import random as rd
import argparse
import os
'''
Returns two non-isorphic graphs h1,h2 of size n which are each generated from a tree
by appending a single edge, such that their sets of vertex degrees are equivalent.
'''
def blockgraph_layouts(n):
while True:
# generate random tree g of size n
g = nx.random_tree(n=n)
# group vertices by their degrees
deg_grouped = {}
for i,d in g.degree():
if d in deg_grouped: deg_grouped[d].append(i)
else: deg_grouped[d] = [i]
# find two vertex pairs (v1,v2) and (u1,u2) with d(v1)==d(u1) and d(v2)==d(u2)
delete = [key for key in deg_grouped if len(deg_grouped[key])<2]
for key in delete: del deg_grouped[key]
if not deg_grouped: continue
deg1 = rd.choice(list(deg_grouped.values()))
v1,u1 = rd.sample(deg1, 2)
deg1.remove(v1)
deg1.remove(u1)
delete = [key for key in deg_grouped if len(deg_grouped[key])<2]
for key in delete: del deg_grouped[key]
if not deg_grouped: continue
deg2 = rd.choice(list(deg_grouped.values()))
v2,u2 = rd.sample(deg2, 2)
# check whether extra edges are already contained in g
if (v1,v2) in g.edges: continue
if (u1,u2) in g.edges: continue
# generate networkx graphs
h1 = g.copy()
h1.add_edge(v1,v2)
h2 = g.copy()
h2.add_edge(u1,u2)
# return graphs only if they are non-isomorphic
if not nx.is_isomorphic(h1,h2): return h1,h2
'''
Returns block graph that has the underlying structure of graph g. Each node in g is replaced
by a block of c vertices. vertices within each block and of neighboring blocks are connected
with probability p. Additionally a number of m noise edges are added.
'''
def blockgraph(g, c, p, m):
edges = []
# intra cluster nodes
for v in g.nodes:
for i in range(c):
for j in range(i):
if rd.random() < p:
edges.append((v*c+j,v*c+i))
# inter cluster nodes
for v in g.nodes:
for u in g.neighbors(v):
if v<u:
for i in range(c):
for j in range(c):
if rd.random() < p:
edges.append((v*c+j,u*c+i))
# random edges
nmb_edges = len(edges)
while len(edges) < nmb_edges+m:
v = rd.randint(0, len(g.nodes)*c-1)
u = rd.randint(0, len(g.nodes)*c-1)
u,v = min(u,v), max(u,v)
if v!=u and (u,v) not in edges: edges.append((v,u))
# return networkx graph
h = nx.Graph()
h.add_nodes_from(range(len(g.nodes)*c))
h.add_edges_from(edges)
return h
'''
Writes graphs to file following TU Dortmund format.
'''
def write_graphs(graphs, file_name):
if not os.path.exists(file_name):
os.mkdir(file_name)
f_A = open(file_name+'/'+file_name+'_A.txt', 'w')
f_gi = open(file_name+'/'+file_name+'_graph_indicator.txt', 'w')
f_gl = open(file_name+'/'+file_name+'_graph_labels.txt', 'w')
f_A.close()
f_gi.close()
f_gl.close()
f_A = open(file_name+'/'+file_name+'_A.txt', 'a')
f_gi = open(file_name+'/'+file_name+'_graph_indicator.txt', 'a')
f_gl = open(file_name+'/'+file_name+'_graph_labels.txt', 'a')
offset = 1
for i,g in enumerate(graphs):
for (u,v) in g.edges:
f_A.write(str(offset+v)+', '+str(offset+u)+'\n')
f_A.write(str(offset+u)+', '+str(offset+v)+'\n')
for v in g.nodes:
f_gi.write(str(i+1)+'\n')
f_gl.write(str(i%2)+'\n')
offset += len(g.nodes)
f_A.close()
f_gi.close()
f_gl.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Blockgraph Dataset Generator')
parser.add_argument('--name',
type=str,
required=True,
help='Name of output file(s)')
parser.add_argument('--N',
type=int,
required=True,
help='Number of graphs per class')
parser.add_argument('--n',
type=int,
required=True,
help='Number of blocks')
parser.add_argument('--c',
type=int,
required=True,
help='Size of blocks')
parser.add_argument('--p',
type=float,
required=True,
help='Edge probability')
parser.add_argument('--m',
type=int,
required=True,
help='Number of noise edges')
parser.add_argument('--seed',
type=int,
required=False,
default=None,
help='Random seed')
args = parser.parse_args()
file = args.name
N = args.N
n = args.n
c = args.c
p = args.p
m = args.m
if args.seed: rd.seed(args.seed)
# generate underlying block graph structures
g,h = blockgraph_layouts(n)
# generate N blockgraphs for each structure
graphs = []
for _ in range(N):
graphs.append(blockgraph(g, c, p, m))
graphs.append(blockgraph(h, c, p, m))
# write graphs to file
write_graphs(graphs, file)