-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_single_fits_grouped.R
106 lines (78 loc) · 2.9 KB
/
test_single_fits_grouped.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Example: Simulated group fits and parameter recovery
# Note: Will take a minute to run
rm(list = ls())
library(tidyverse)
library(discountingtools)
set.seed(65535)
n_per_group <- 50
data_frame = data.frame(
ids = seq_len(n_per_group),
ks = NA,
grp = "Group A"
)
data_frame$ks = rnorm(length(data_frame$ids), 0.35, 0.125)
data_frame$ks = log(data_frame$ks)
delays = c(1, 30, 180, 540, 1080, 2160, 4320, 8640)
data_frame$auc = dd_mbauc_mazur(1, data_frame$ks, min(delays), max(delays))
for (row in 1:nrow(data_frame)) {
ys = dd_discount_func_mazur(delays, data_frame[row, "ks"]) + rnorm(length(delays),
0,
0.05)
data_frame[row, as.character(delays)] = ys
}
data_frame2 = data.frame(
ids = 50 + seq_len(n_per_group),
ks = NA,
grp = "Group B"
)
data_frame2$ks = rnorm(length(data_frame2$ids), 0.075, 0.035)
data_frame2$ks = log(data_frame2$ks)
data_frame2$auc = dd_mbauc_mazur(1, data_frame2$ks, min(delays), max(delays))
for (row in 1:nrow(data_frame2)) {
ys = dd_discount_func_mazur(delays, data_frame2[row, "ks"]) + rnorm(length(delays),
0,
0.025)
data_frame2[row, as.character(delays)] = ys
}
data_frame = rbind(data_frame,
data_frame2)
data_frame_long = data_frame %>%
gather(Delay, Value, -ids, -ks, -grp, -auc) %>%
mutate(Delay = as.numeric(Delay)) %>%
mutate(Value = ifelse(Value < 0, 0, Value)) %>%
mutate(Value = ifelse(Value > 1, 0, Value))
results = fit_dd_curves(data = data_frame_long,
settings = list(Delays = Delay,
Values = Value,
Individual = ids,
Group = grp),
plan = c("mazur", "exponential"),
maxValue = 1,
verbose = TRUE) |>
dd_analyze(modelSelection = TRUE)
data_frame_results = summary(results)
png(filename = "../man/figures/single_fits_grouped.png",
width = 8,
height = 4,
res = 600,
units = "in")
par(mfrow = c(1, 2))
plot(results, logAxis = "x", position = "topright", which = "group")
vecColors <- rainbow(2, alpha = 1)
plot(data_frame_results[data_frame_results$Group == 'Group A','ProbableModel.MBAUC'],
data_frame[data_frame$grp == "Group A", 'auc'],
main = "Fitted vs. Simulated",
ylab = "Fitted",
xlab = "Simulated",
col = vecColors[1],
ylim = c(0, 0.05),
xlim = c(0, 0.05))
points(data_frame_results[data_frame_results$Group == 'Group B','ProbableModel.MBAUC'],
data_frame[data_frame$grp == "Group B", 'auc'],
main = "Fitted vs. Simulated",
ylab = "Fitted AUC",
xlab = "Simulated AUC",
col = vecColors[2])
lines(c(0, 0.05),
c(0, 0.05))
dev.off()