-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpotifyPersonalDataAnalysis.py
310 lines (240 loc) · 10.9 KB
/
SpotifyPersonalDataAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import pandas as pd
import json
import matplotlib.pyplot as plt
import seaborn as sns
import spotipy
import spotipy.util as util
from spotipy.oauth2 import SpotifyClientCredentials
# AUTHORIZATION FLOW
# Declare the credentials
client_id = 'Enter your client ID'
client_secret = 'Enter your client secret'
redirect_uri='http://localhost:7777/callback'
username = 'Enter your username'
# Authorization flow
scope = 'user-top-read'
token = util.prompt_for_user_token(username, scope, client_id=client_id, client_secret=client_secret, redirect_uri=redirect_uri)
if token:
sp = spotipy.Spotify(auth=token)
else:
print("Can't get token for", username)
# You have to first run the above code i.e code till line 27. You will be redirected to spotify weebsite. Click on Agree and then a message with "Authorisation: Sucessful" will be displayed
# Extract your top-50 songs
if token:
sp = spotipy.Spotify(auth=token)
results = sp.current_user_top_tracks(limit=50,offset=0,time_range='medium_term')
for song in range(50):
list = []
list.append(results)
with open('top50_data.json', 'w', encoding='utf-8') as f:
json.dump(list, f, ensure_ascii=False, indent=4)
else:
print("Can't get token for", username)
# Open the JSON file to Python objects
with open('top50_data.json') as f:
data = json.load(f)
print("Total number of songs: ",len(data[0]['items']))
list_of_results = data[0]["items"]
list_of_artist_names = []
list_of_artist_uri = []
list_of_song_names = []
list_of_song_uri = []
list_of_durations_ms = []
list_of_explicit = []
list_of_albums = []
list_of_popularity = []
for result in list_of_results:
result["album"]
this_artists_name = result["artists"][0]["name"]
list_of_artist_names.append(this_artists_name)
this_artists_uri = result["artists"][0]["uri"]
list_of_artist_uri.append(this_artists_uri)
list_of_songs = result["name"]
list_of_song_names.append(list_of_songs)
song_uri = result["uri"]
list_of_song_uri.append(song_uri)
list_of_duration = result["duration_ms"]
list_of_durations_ms.append(list_of_duration)
song_explicit = result["explicit"]
list_of_explicit.append(song_explicit)
this_album = result["album"]["name"]
list_of_albums.append(this_album)
song_popularity = result["popularity"]
list_of_popularity.append(song_popularity)
# Convert the extracted data to a pandas dataframe
all_songs = pd.DataFrame(
{'artist': list_of_artist_names,
'artist_uri': list_of_artist_uri,
'song': list_of_song_names,
'song_uri': list_of_song_uri,
'duration_ms': list_of_durations_ms,
'explicit': list_of_explicit,
'album': list_of_albums,
'popularity': list_of_popularity
})
allsongsdisplay = all_songs.sort_values('popularity', ascending=False)
print(allsongsdisplay)
allsongsdisplay.to_csv("Top50Songs.csv") # Save in a CSV file in the project directory
descending_order = all_songs['artist'].value_counts().sort_values(ascending=False).index
ax = sns.countplot(y=all_songs['artist'], order=descending_order, palette='Pastel2')
sns.despine(fig=None, ax=None, top=True, right=True, left=False, trim=False)
sns.set(rc={'figure.figsize': (14, 17)})
ax.set_ylabel('')
ax.set_xlabel('')
ax.set_title('Number of Songs per Artist in the Top 50', fontsize=16, fontweight='heavy')
sns.set(font_scale=1.4)
ax.axes.get_xaxis().set_visible(False)
ax.set_frame_on(False)
y = all_songs['artist'].value_counts()
for i, v in enumerate(y):
ax.text(v + 0.2, i + .16, str(v), color='black', fontweight='light', fontsize=14)
plt.show()
# Extracting all my playlists
client_credentials_manager = SpotifyClientCredentials(client_id=client_id, client_secret=client_secret)
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)
playlists = sp.user_playlists(username)
def fetch_playlists(sp, username):
id = []
name = []
num_tracks = []
# Make the API request
playlists = sp.user_playlists(username)
for playlist in playlists['items']:
id.append(playlist['id'])
name.append(playlist['name'])
num_tracks.append(playlist['tracks']['total'])
# Create the final df
df_playlists = pd.DataFrame({"id":id, "name": name, "#tracks": num_tracks})
return df_playlists
print("My Playlists: \n",fetch_playlists(sp,username))
# Pull tracks for the given playlist
def fetch_playlist_tracks(sp, username, playlist_id):
offset = 0
tracks = []
# API request
while True:
content = sp.user_playlist_tracks(username, playlist_id, fields=None, limit=100, offset=offset, market=None)
tracks += content['items']
if content['next'] is not None:
offset += 100
else:
break
track_id = []
track_name = []
for track in tracks:
track_id.append(track['track']['id'])
track_name.append(track['track']['name'])
# Create the final dataframe
df_playlists_tracks = pd.DataFrame({"track_id":track_id, "track_name": track_name})
return df_playlists_tracks
print("Playlist Tracks: \n") # After Username add the Playlist_id of any playlist of your choice (that we saw from the previous table)
print(fetch_playlist_tracks(sp, username, 'Enter the playlist_id'))
# Extract songs' audio characteristics/features
def fetch_audio_features(sp, username, playlist_id):
playlist = fetch_playlist_tracks(sp, username, playlist_id)
index = 0
audio_features = []
while index < playlist.shape[0]:
audio_features += sp.audio_features(playlist.iloc[index:index + 50, 0])
index += 50
# features list
features_list = []
for features in audio_features:
features_list.append([features['danceability'],
features['energy'], features['tempo'],
features['loudness'], features['valence'],
features['speechiness'], features['instrumentalness'],
features['liveness'], features['acousticness']])
df_audio_features = pd.DataFrame(features_list, columns=['danceability', 'energy',
'tempo', 'loudness', 'valence',
'speechiness', 'instrumentalness',
'liveness', 'acousticness'])
df_playlist_audio_features = pd.concat([playlist, df_audio_features], axis=1)
df_playlist_audio_features.set_index('track_id', inplace=True, drop=True)
return df_playlist_audio_features
df1 = fetch_audio_features(sp, username, 'Enter the playlist_id')
print("\n Three songs with their corresponding features: \n")
print(df1.head(3))
for feature in df1.columns:
# tempo, ludness and track_name will not be mulitplied by 100.
if feature == 'tempo' or feature == 'loudness' or feature == 'track_name':
continue
df1[feature] = df1[feature] * 100
print("\n Three songs with their corresponding features (values * 100): \n")
print(df1.head(3))
# Returns selected audio features of every track, for the given playlist.
def fetch_audio_features(sp, username, playlist_id):
playlist = fetch_playlist_tracks(sp, username, playlist_id)
index = 0
audio_features = []
# API request
while index < playlist.shape[0]:
audio_features += sp.audio_features(playlist.iloc[index:index + 50, 0])
index += 50
# Append the audio features in a list
features_list = []
for features in audio_features:
features_list.append([features['danceability'],
features['energy'], features['tempo'],
features['loudness'], features['valence']])
df_audio_features = pd.DataFrame(features_list, columns=['danceability', 'energy',
'tempo', 'loudness', 'valence'])
# Set the 'tempo' & 'loudness' in the same range with the rest features, that's why multiplying it by 100
for feature in df_audio_features.columns:
if feature == 'tempo' or feature == 'loudness':
continue
df_audio_features[feature] = df_audio_features[feature] * 100
# Create the final df, using the 'track_id' as index for future reference
df_playlist_audio_features = pd.concat([playlist, df_audio_features], axis=1)
df_playlist_audio_features.set_index('track_id', inplace=True, drop=True)
return df_playlist_audio_features
df2 = fetch_audio_features(sp, username, 'Enter playlist_id')
print("\n Selected Audio Features: \n")
print(df2.head(3))
# Self-Made personal playlist
playlists = fetch_playlists(sp,username)
playlists = playlists[:4].copy()
print("\n Self-made Playlist: \n", playlists)
df_onrepeat = fetch_audio_features(sp, username, 'Enter playlist_id')
df_jacques = fetch_audio_features(sp, username, 'Enter playlist_id')
df_kirk = fetch_audio_features(sp, username, 'Enter playlist_id')
df_onika = fetch_audio_features(sp, username, 'Enter playlist_id')
print(df_kirk.head().iloc[:, 1:])
# Plotting diagrams
plt.style.use('fivethirtyeight') # FiveThirtyEight style sheet
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(13, 13))
ax1, ax2, ax3, ax4 = axes.flatten()
fig.subplots_adjust(hspace=.2, wspace=.5)
df_kirk.mean().plot.barh(ax=ax1, colormap='ocean', fontsize=13)
ax1.set_xlim(-25,130)
df_jacques.mean().plot.barh(ax=ax2, colormap='Dark2', fontsize=13)
ax2.set_xlim(-25,130)
df_onika.mean().plot.barh(ax=ax3, colormap='brg', fontsize=13)
ax3.set_xlim(-25,130)
df_onrepeat.mean().plot.barh(ax=ax4, colormap='jet', fontsize=13)
ax4.set_xlim(-25,130)
# Create titles
ax1.set_title('Jonathon Kirk Playlist')
ax2.set_title('Jacques Webster Playlist')
ax3.set_title('Onika Maraj Playlist')
ax4.set_title('On Repeat G Playlist')
plt.show()
kirk_mean = pd.DataFrame(df_kirk.mean(), columns= ['kirk_playlist'])
jacques_mean = pd.DataFrame(df_jacques.mean(), columns= ['jacques_playlist'])
onrepeat_mean = pd.DataFrame(df_onrepeat.mean(), columns= ['onrepeat_playlist'])
onika_mean = pd.DataFrame(df_onika.mean(), columns= ['onika_playlist'])
total_mean = pd.concat([kirk_mean, jacques_mean, onika_mean, onrepeat_mean], axis=1)
print("Summary: \n", total_mean)
plt.style.use('fivethirtyeight') # FiveThirtyEight style sheet
total_mean.plot.barh(color = ['#008080', '#800080', '#008000', '#800000'], width = .8, rot = 0, figsize = (8,6))
plt.title('Comparing Mean Audio Features: ', y = 1.07)
plt.xlim(-20,130) # because ratings start at 0 and end at 5
plt.legend(framealpha = 0, loc = 'upper right')
plt.show()
# For now, I will be focus on only one playlist. That is the Onika Maraj playlist
print(df_onika.describe())
df_onika.boxplot(vert = False, figsize = (13,7), showfliers = False, showmeans = True,
patch_artist=True, boxprops=dict(linestyle='-', linewidth=1.5),
flierprops=dict(linestyle='-', linewidth=1.5),
medianprops=dict(linestyle='-', linewidth=1.5))
plt.show()