-
Notifications
You must be signed in to change notification settings - Fork 147
/
Copy pathRules.v
1281 lines (1180 loc) · 77.7 KB
/
Rules.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Import Coq.ZArith.ZArith.
Require Import Crypto.Util.ListUtil Coq.Lists.List Crypto.Util.ListUtil.FoldBool.
Require Import Crypto.Util.ZRange.
Require Import Crypto.Util.ZRange.Operations.
Require Import Crypto.Util.ZUtil.Definitions.
Require Import Crypto.Util.ZUtil.Notations.
Require Import Crypto.Util.ZRange.
Require Import Crypto.Util.ZRange.Operations.
Require Import Crypto.Language.PreExtra.
Require Import Crypto.Util.LetIn.
Require Import Crypto.Util.Notations.
Import ListNotations. Local Open Scope bool_scope. Local Open Scope Z_scope.
Local Definition mymap {A B} := Eval cbv in @List.map A B.
Local Definition myapp {A} := Eval cbv in @List.app A.
Local Definition myflatten {A} := Eval cbv in List.fold_right myapp (@nil A).
Local Notation dont_do_again := (pair false) (only parsing).
Local Notation do_again := (pair true) (only parsing).
Local Notation "' x" := (ident.literal x).
Local Notation cstZ r := (ident.cast ('r%zrange)).
Local Notation cstZZ r1 r2 := (ident.cast2 ('(r1%zrange), '(r2%zrange))).
Local Notation "'plet' x := y 'in' z"
:= (match y return _ with x => z end).
Local Notation dlet2_opp2 rv rc e
:= (plet rc' := (-rc)%zrange in
plet cst' := cstZZ rv rc' in
plet cst1 := cstZ rv in
plet cst2 := cstZ rc in
plet cst2' := cstZ rc' in
(dlet vc := cst' e in
(cst1 (fst (cst' vc)), cst2 (-(cst2' (snd (cst' vc))))))).
Local Notation dlet2 rv rc e
:= (dlet vc := cstZZ rv rc e in
(cstZ rv (fst (cstZZ rv rc vc)),
cstZ rc (snd (cstZZ rv rc vc)))).
Local Notation "x '\in' y" := (is_bounded_by_bool x (ZRange.normalize y) = true) : zrange_scope.
Local Notation "x ∈ y" := (is_bounded_by_bool x (ZRange.normalize y) = true) : zrange_scope.
Local Notation "x <= y" := (is_tighter_than_bool (ZRange.normalize x) y = true) : zrange_scope.
Local Notation "x <= y <= z" := (andb (is_tighter_than_bool (ZRange.normalize x) y) (is_tighter_than_bool (ZRange.normalize y) z) = true) : zrange_scope.
Local Notation litZZ x := (ident.literal (fst x), ident.literal (snd x)) (only parsing).
Local Notation n r := (ZRange.normalize r) (only parsing).
Local Notation "typeof! x" := ltac:(let t := type of x in exact t) (at level 10, only parsing).
Lemma prod_rect_eta A B C f p : @prod_rect A B (fun _ : A * B => C) f p = f (fst p) (snd p).
Proof. case p; trivial. Qed.
(* N.B. [ident.eagerly] does not play well with [do_again] *)
Definition nbe_rewrite_rulesT : list (bool * Prop)
:= Eval cbv [myapp mymap myflatten] in
myflatten
[mymap
dont_do_again
[(forall A B x y, @fst A B (x, y) = x)
; (forall A B x y, @snd A B (x, y) = y)
; (forall P t f, @Thunked.bool_rect P t f true = t tt)
; (forall P t f, @Thunked.bool_rect P t f false = f tt)
; (forall A B C f x y, @prod_rect A B (fun _ => C) f (x, y) = f x y)
; (forall A B C f p, @prod_rect A B (fun _ : A * B => C) f p = dlet p := p in f (fst p) (snd p))
; (forall A x n,
@List.repeat A x ('n)
= ident.eagerly (@nat_rect) _ nil (fun k repeat_k => x :: repeat_k) ('n))
; (forall A xs ys,
xs ++ ys
= ident.eagerly (@list_rect) A _ ys (fun x xs app_xs_ys => x :: app_xs_ys) xs)
; (forall A B f a ls,
@fold_right A B f a ls
= (ident.eagerly (@list_rect) _ _)
a
(fun x xs fold_right_xs => f x fold_right_xs)
ls)
; (forall A P N C ls,
@Thunked.list_rect A P N C ls
= ident.eagerly (@Thunked.list_rect) A P N C ls)
; (forall A P Q N C ls v,
@list_rect A (fun _ => P -> Q) N C ls v
= ident.eagerly (@list_rect) A (fun _ => P -> Q) N C ls v)
; (forall A P N C, @Thunked.list_case A P N C nil = N tt)
; (forall A P N C x xs, @Thunked.list_case A P N C (x :: xs) = C x xs)
; (forall A B f ls,
@List.map A B f ls
= (ident.eagerly (@list_rect) _ _)
nil
(fun x xs map_f_xs => f x :: map_f_xs)
ls)
; (forall P O_case S_case n,
@Thunked.nat_rect P O_case S_case ('n)
= (ident.eagerly (@Thunked.nat_rect) _)
O_case
S_case
('n))
; (forall P Q O_case S_case n v,
@nat_rect (fun _ => P -> Q) O_case S_case ('n) v
= (ident.eagerly (@nat_rect) _)
O_case
S_case
('n)
v)
; (forall A default ls n,
@List.nth_default A default ls ('n)
= ident.eagerly (@List.nth_default) _ default ls ('n))
]
; mymap
do_again
[(forall A B xs ys,
@List.combine A B xs ys
= (list_rect _)
(fun _ => nil)
(fun x xs combine_xs ys
=> match ys with
| nil => nil
| y :: ys => (x, y) :: combine_xs ys
end)
xs
ys)
; (forall A n ls,
@List.firstn A ('n) ls
= (nat_rect _)
(fun _ => nil)
(fun n' firstn_n' ls
=> match ls with
| nil => nil
| cons x xs => x :: firstn_n' xs
end)
('n)
ls)
; (forall A n ls,
@List.skipn A ('n) ls
= (nat_rect _)
(fun ls => ls)
(fun n' skipn_n' ls
=> match ls with
| nil => nil
| cons x xs => skipn_n' xs
end)
('n)
ls)
; (forall A xs,
@List.length A xs
= (list_rect _)
0%nat
(fun _ xs length_xs => S length_xs)
xs)
; (forall A xs,
@List.rev A xs
= (list_rect _)
nil
(fun x xs rev_xs => rev_xs ++ [x])
xs)
; (forall A B f xs,
@List.flat_map A B f xs
= (list_rect _)
nil
(fun x _ flat_map_tl => f x ++ flat_map_tl)
xs)
; (forall A f xs,
@List.partition A f xs
= (list_rect _)
([], [])
(fun x tl partition_tl
=> let '(g, d) := partition_tl in
if f x then (x :: g, d) else (g, x :: d))
xs)
; (forall A f xs,
@List.filter A f xs
= (list_rect _)
nil
(fun x xs' filter_xs'
=> if f x then x :: filter_xs' else filter_xs')
xs)
; (forall A n f xs,
@update_nth A ('n) f xs
= (nat_rect _)
(fun xs => match xs with
| nil => nil
| x' :: xs' => f x' :: xs'
end)
(fun n' update_nth_n' xs
=> match xs with
| nil => nil
| x' :: xs' => x' :: update_nth_n' xs'
end)
('n)
xs)
; typeof! @unfold1_nat_rect_fbb_b
; typeof! @unfold1_nat_rect_fbb_b_b
; typeof! @unfold1_list_rect_fbb_b
; typeof! @unfold1_list_rect_fbb_b_b
; typeof! @unfold1_list_rect_fbb_b_b_b
; typeof! @unfold1_list_rect_fbb_b_b_b_b
; typeof! @unfold1_list_rect_fbb_b_b_b_b_b
]
].
Definition unfold_value_barrier_rewrite_rulesT : list (bool * Prop)
:= Eval cbv [myapp mymap myflatten] in
myflatten
[mymap
dont_do_again
[(forall x, Z.value_barrier x = x)
]
].
Definition arith_rewrite_rulesT (max_const_val : Z) : list (bool * Prop)
:= Eval cbv [myapp mymap myflatten] in
myflatten
[mymap
dont_do_again
[(forall A B x y, @fst A B (x, y) = x)
; (forall A B x y, @snd A B (x, y) = y)
; (forall v, 0 + v = v)
; (forall v, v + 0 = v)
; (forall x y, (-x) + (-y) = -(x + y))
; (forall x y, (-x) + y = y - x)
; (forall x y, x + (-y) = x - y)
; (forall v, 0 - (-v) = v)
; (forall v, 0 - v = -v)
; (forall v, v - 0 = v)
; (forall x y, (-x) - (-y) = y - x)
; (forall x y, (-x) - y = -(x + y))
; (forall x y, x - (-y) = x + y)
; (forall v, 0 * v = 0)
; (forall v, v * 0 = 0)
; (forall v, 1 * v = v)
; (forall v, v * 1 = v)
; (forall v, (-1) * (-v) = v)
; (forall v, (-v) * (-1) = v)
; (forall v, (-1) * v = -v)
; (forall v, v * (-1) = -v)
; (forall x y, (-x) * (-y) = x * y)
; (forall x y, (-x) * y = -(x * y))
; (forall x y, x * (-y) = -(x * y))
; (forall x, x &' 0 = 0)
; (forall x, x / 1 = x)
; (forall x, x mod 1 = 0)
; (forall v, -(-v) = v)
; (forall v, Z.land v ('0) = '0)
; (forall v, Z.land ('0) v = '0)
; (forall v, Z.land v ('-1) = v)
; (forall v, Z.land ('-1) v = v)
; (forall v, Z.lor v ('0) = v)
; (forall v, Z.lor ('0) v = v)
; (forall v, Z.lor v ('-1) = '-1)
; (forall v, Z.lor ('-1) v = '-1)
; (forall z v, z > 0 -> 'z + (-v) = 'z - v)
; (forall z v, z > 0 -> (-v) + 'z = 'z - v)
; (forall z v, z < 0 -> 'z + (-v) = -('(-z) + v))
; (forall z v, z < 0 -> (-v) + 'z = -(v + '(-z)))
; (forall z v, z > 0 -> 'z - (-v) = 'z + v)
; (forall z v, z < 0 -> 'z - (-v) = v - '(-z))
; (forall z v, z < 0 -> 'z - v = -('(-z) + v))
; (forall z v, z > 0 -> (-v) - 'z = -(v + 'z))
; (forall z v, z < 0 -> (-v) - 'z = '(-z) - v)
; (forall z v, z < 0 -> v - 'z = v + '(-z))
; (forall x y, 'x * 'y = '(x*y))
; (forall z v, z < 0 -> 'z * v = -('(-z) * v))
; (forall z v, z < 0 -> v * 'z = -(v * '(-z)))
; (forall x y, y = 2^Z.log2 y -> y <> 2 -> x * 'y = x << '(Z.log2 y))
; (forall x y, y = 2^Z.log2 y -> y <> 2 -> 'y * x = x << '(Z.log2 y))
; (forall x y, y = 2^Z.log2 y -> x / 'y = x >> '(Z.log2 y))
; (forall x y, y = 2^Z.log2 y -> x mod 'y = x &' '(y-1))
(* We reassociate some multiplication of small constants *)
; (forall c1 c2 x y,
Z.abs c1 <= Z.abs max_const_val
-> Z.abs c2 <= Z.abs max_const_val
-> 'c1 * ('c2 * (x * y)) = (x * (y * ('c1 * 'c2))))
; (forall c1 c2 x y,
Z.abs c1 <= Z.abs max_const_val
-> Z.abs c2 <= Z.abs max_const_val
-> 'c1 * (x * (y * 'c2)) = (x * (y * ('c1 * 'c2))))
; (forall c x y,
Z.abs c <= Z.abs max_const_val
-> 'c * (x * y) = x * (y * 'c))
; (forall c x,
Z.abs c <= Z.abs max_const_val
-> 'c * x = x * 'c)
(* transform +- to + *)
; (forall s y x,
Z.add_get_carry_full s x (- y)
= dlet vb := Z.sub_get_borrow_full s x y in (fst vb, - snd vb))
; (forall s y x,
Z.add_get_carry_full s (- y) x
= dlet vb := Z.sub_get_borrow_full s x y in (fst vb, - snd vb))
; (forall s y x k,
Z.add_get_carry_full s x (-y * k)
= dlet vb := Z.sub_get_borrow_full s x (y * k) in (fst vb, - snd vb))
; (forall s y x k,
Z.add_get_carry_full s (-y * k) x
= dlet vb := Z.sub_get_borrow_full s x (y * k) in (fst vb, - snd vb))
; (forall s y x,
Z.add_with_get_carry_full s 0 x (- y)
= dlet vb := Z.sub_get_borrow_full s x y in (fst vb, - snd vb))
; (forall s y x,
Z.add_with_get_carry_full s 0 (- y) x
= dlet vb := Z.sub_get_borrow_full s x y in (fst vb, - snd vb))
; (forall s c x,
Z.add_with_get_carry_full s (- c) x 0
= dlet vb := Z.sub_with_get_borrow_full s c x 0 in (fst vb, - snd vb))
; (forall s c y x,
Z.add_with_get_carry_full s (- c) (- y) x
= dlet vb := Z.sub_with_get_borrow_full s c x y in (fst vb, - snd vb))
; (forall s c y x,
Z.add_with_get_carry_full s (- c) x (- y)
= dlet vb := Z.sub_with_get_borrow_full s c x y in (fst vb, - snd vb))
; (forall s c y x k,
Z.add_with_get_carry_full s c x (-y * k)
= dlet vb := Z.sub_with_get_borrow_full s (-c) x (y * k) in (fst vb, - snd vb))
; (forall s c y x k,
Z.add_with_get_carry_full s c (-y * k) x
= dlet vb := Z.sub_with_get_borrow_full s (-c) x (y * k) in (fst vb, - snd vb))
; (forall b x, (* inline negation when the rewriter wouldn't already inline it *)
ident.gets_inlined b x = false
-> -x = dlet v := x in -v)
]
].
Definition arith_with_casts_rewrite_rulesT (adc_no_carry_to_add : bool) : list (bool * Prop)
:= Eval cbv [myapp mymap myflatten] in
myflatten
[mymap
dont_do_again
[(forall A B x y, @fst A B (x, y) = x)
; (forall A B x y, @snd A B (x, y) = y)
; (forall P t f, @Thunked.bool_rect P t f true = t tt)
; (forall P t f, @Thunked.bool_rect P t f false = f tt)
; (forall r v, lower r = upper r -> cstZ r v = cstZ r ('(lower r)))
; (forall r0 v, 0 ∈ r0 -> cstZ r0 0 + v = v)
; (forall r0 v, 0 ∈ r0 -> v + cstZ r0 0 = v)
; (forall r0 v, 0 ∈ r0 -> v - cstZ r0 0 = v)
; (forall r0 v, 0 ∈ r0 -> cstZ r0 0 - v = -v)
; (forall r0 v, 0 ∈ r0 -> cstZ r0 0 << v = 0)
; (forall r0 rnv rv v,
(rv <= -n rnv)%zrange -> 0 ∈ r0
-> cstZ r0 0 - cstZ rnv (-(cstZ rv v)) = cstZ rv v)
; (forall rnv rv v,
(rv <= -n rnv)%zrange
-> -(cstZ rnv (-(cstZ rv v))) = cstZ rv v)
; (forall rland r0 rv v,
0 ∈ rland -> 0 ∈ r0
-> cstZ rland (Z.land (cstZ rv v) (cstZ r0 ('0))) = cstZ r0 ('0))
; (forall rland r0 rv v,
0 ∈ rland -> 0 ∈ r0
-> cstZ rland (Z.land (cstZ r0 ('0)) (cstZ rv v)) = cstZ r0 ('0))
; (forall rland rm1 rv v,
(rv <= rland)%zrange -> -1 ∈ rm1
-> cstZ rland (Z.land (cstZ rv v) (cstZ rm1 ('-1))) = cstZ rv v)
; (forall rland rm1 rv v,
(rv <= rland)%zrange -> -1 ∈ rm1
-> cstZ rland (Z.land (cstZ rm1 ('-1)) (cstZ rv v)) = cstZ rv v)
; (forall rlor r0 rv v,
(rv <= rlor)%zrange -> 0 ∈ r0
-> cstZ rlor (Z.lor (cstZ rv v) (cstZ r0 ('0))) = cstZ rv v)
; (forall rlor r0 rv v,
(rv <= rlor)%zrange -> 0 ∈ r0
-> cstZ rlor (Z.lor (cstZ r0 ('0)) (cstZ rv v)) = cstZ rv v)
; (forall rlor rm1 rv v,
-1 ∈ rlor -> -1 ∈ rm1
-> cstZ rlor (Z.lor (cstZ rv v) (cstZ rm1 ('-1))) = cstZ rm1 ('-1))
; (forall rlor rm1 rv v,
-1 ∈ rlor -> -1 ∈ rm1
-> cstZ rlor (Z.lor (cstZ rm1 ('-1)) (cstZ rv v)) = cstZ rm1 ('-1))
; (forall rx x ry y, upper (n rx) <= lower (n ry) -> (cstZ rx x <=? cstZ ry y)%Z = true)
; (forall rx x ry y, upper (n ry) < lower (n rx) -> (cstZ rx x <=? cstZ ry y)%Z = false)
; (forall rx x ry y, upper (n rx) < lower (n ry) -> (cstZ rx x <? cstZ ry y)%Z = true)
; (forall rx x ry y, upper (n ry) <= lower (n rx) -> (cstZ rx x <? cstZ ry y)%Z = false)
; (forall rx x ry y, upper (n ry) <= lower (n rx) -> (cstZ rx x >=? cstZ ry y)%Z = true)
; (forall rx x ry y, upper (n rx) < lower (n ry) -> (cstZ rx x >=? cstZ ry y)%Z = false)
; (forall rx x ry y, upper (n ry) < lower (n rx) -> (cstZ rx x >? cstZ ry y)%Z = true)
; (forall rx x ry y, upper (n rx) <= lower (n ry) -> (cstZ rx x >? cstZ ry y)%Z = false)
; (forall rx x ry y, upper (n rx) < lower (n ry) -> Z.ltz (cstZ rx x) (cstZ ry y) = 1)
; (forall rx x ry y, upper (n ry) <= lower (n rx) -> Z.ltz (cstZ rx x) (cstZ ry y) = 0)
; (forall rx x rc c, c ∈ rc -> upper (n rx) < c -> Z.ltz (cstZ rx x) (cstZ rc ('c)) = 1)
; (forall rx x rc c, c ∈ rc -> c <= lower (n rx) -> Z.ltz (cstZ rx x) (cstZ rc ('c)) = 0)
; (forall rc c ry y, c ∈ rc -> c < lower (n ry) -> Z.ltz (cstZ rc ('c)) (cstZ ry y) = 1)
; (forall rc c ry y, c ∈ rc -> upper (n ry) <= c -> Z.ltz (cstZ rc ('c)) (cstZ ry y) = 0)
; (forall s r0 y, 0 ∈ r0 -> Z.mul_split s (cstZ r0 0) y = (cstZ r[0~>0] 0, cstZ r[0~>0] 0))
; (forall s r0 y, 0 ∈ r0 -> Z.mul_split s y (cstZ r0 0) = (cstZ r[0~>0] 0, cstZ r[0~>0] 0))
; (forall rs s r1 ry y,
1 ∈ r1 -> s ∈ rs -> (ry <= r[0~>s-1])%zrange
-> Z.mul_split (cstZ rs ('s)) (cstZ r1 1) (cstZ ry y)
= (cstZ ry y, cstZ r[0~>0] 0))
; (forall rs s r1 ry y,
1 ∈ r1 -> s ∈ rs -> (ry <= r[0~>s-1])%zrange
-> Z.mul_split (cstZ rs ('s)) (cstZ ry y) (cstZ r1 1)
= (cstZ ry y, cstZ r[0~>0] 0))
]
; mymap
dont_do_again
[ (** remove unnecessary masks *)
(forall rv rx x ry y,
(rx <= rv)%zrange ->
(rx <= r[0~>y])%zrange ->
y ∈ ry -> y = Z.ones (Z.succ (Z.log2 y))
-> cstZ rv (cstZ rx x &' cstZ ry ('y)) = cstZ rx x);
(forall rv rx x ry y,
(rx <= rv)%zrange ->
(rx <= r[0~>y])%zrange ->
y ∈ ry -> y = Z.ones (Z.succ (Z.log2 y))
-> cstZ rv (cstZ ry ('y) &' cstZ rx x) = cstZ rx x)
]%Z%zrange
; mymap
do_again
[ (forall x y, cstZ r[0~>1] x * y = Z.zselect (cstZ r[0~>1] x) (cstZ r[0~>0] (' 0)) y)
; (forall x y, y * cstZ r[0~>1] x = Z.zselect (cstZ r[0~>1] x) (cstZ r[0~>0] (' 0)) y)
; (forall c M rv r0 rM, 0 ∈ r0 -> M ∈ rM -> M ∈ rv -> 2^Z.log2 (M+1) = M + 1 -> 1 <= M ->
cstZ rv (Z.zselect (cstZ r[0~>1] c) (cstZ r0 ('0)) (cstZ rM ('M)))
= (dlet vc := cstZZ rv r[0~>1] (Z.sub_with_get_borrow_full ('(M+1)) (cstZ r[0~>1] c) 0 0) in
cstZ rv (fst vc)))
; (forall rv c x y, cstZ rv (Z.zselect c x y) = dlet v := cstZ rv (Z.zselect c x y) in cstZ rv v)
]
; mymap
do_again
[ (* [do_again], so that we can trigger add/sub rules on the output *)
(** flatten add/sub which incurs no carry/borrow *)
(forall rv rs s rx x ry y,
adc_no_carry_to_add = true -> s ∈ rs -> (n rx + n ry <= r[0~>s-1])%zrange
-> cstZZ rv r[0~>0] (Z.add_get_carry_full (cstZ rs ('s)) (cstZ rx x) (cstZ ry y))
= (cstZ rv (cstZ rx x + cstZ ry y), cstZ r[0~>0] ('0)))
; (forall rv rs s rc c rx x ry y,
adc_no_carry_to_add = true -> s ∈ rs -> (n rc + n rx + n ry <= r[0~>s-1])%zrange
-> cstZZ rv r[0~>0] (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc c) (cstZ rx x) (cstZ ry y))
= (cstZ rv (cstZ rc c + cstZ rx x + cstZ ry y), cstZ r[0~>0] ('0)))
; (forall rv rs s rx x ry y,
adc_no_carry_to_add = true -> s ∈ rs -> (n rx - n ry <= r[0~>s-1])%zrange
-> cstZZ rv r[0~>0] (Z.sub_get_borrow_full (cstZ rs ('s)) (cstZ rx x) (cstZ ry y))
= (cstZ rv (cstZ rx x - cstZ ry y), (cstZ r[0~>0] ('0))))
; (forall rv rs s rc c rx x ry y,
adc_no_carry_to_add = true -> s ∈ rs -> (n rx - n ry - n rc <= r[0~>s-1])%zrange
-> cstZZ rv r[0~>0] (Z.sub_with_get_borrow_full (cstZ rs ('s)) (cstZ rc c) (cstZ rx x) (cstZ ry y))
= (cstZ rv (cstZ rx x - cstZ ry y - cstZ rc c), (cstZ r[0~>0] ('0))))
]%Z%zrange
; mymap
dont_do_again
[(forall rv rc s rny ry y x,
(ry <= -n rny)%zrange
-> cstZZ rv rc (Z.add_get_carry_full s (cstZ rny (-cstZ ry y)) x)
= dlet2_opp2 rv rc (Z.sub_get_borrow_full s x (cstZ ry y)))
; (forall rv rc s rny ry y x,
(ry <= -n rny)%zrange
-> cstZZ rv rc (Z.add_get_carry_full s x (cstZ rny (-cstZ ry y)))
= dlet2_opp2 rv rc (Z.sub_get_borrow_full s x (cstZ ry y)))
; (forall rv rc s ryy yy x,
yy ∈ ryy -> yy < 0
-> cstZZ rv rc (Z.add_get_carry_full s (cstZ ryy ('yy)) x)
= dlet2_opp2 rv rc (Z.sub_get_borrow_full s x (cstZ (-ryy) ('(-yy)))))
; (forall rv rc s ryy yy x,
yy ∈ ryy -> yy < 0
-> cstZZ rv rc (Z.add_get_carry_full s x (cstZ ryy ('yy)))
= dlet2_opp2 rv rc (Z.sub_get_borrow_full s x (cstZ (-ryy) ('(-yy)))))
; (forall rv rc s rnc rc' c' rny ry y x,
(ry <= -n rny)%zrange -> (rc' <= -n rnc)%zrange
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ rnc (-cstZ rc' c')) (cstZ rny (-cstZ ry y)) x)
= dlet2_opp2 rv rc (Z.sub_with_get_borrow_full s (cstZ rc' c') x (cstZ ry y)))
; (forall rv rc s rnc rc' c' rny ry y x,
(ry <= -n rny)%zrange -> (rc' <= -n rnc)%zrange
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ rnc (-cstZ rc' c')) x (cstZ rny (-cstZ ry y)))
= dlet2_opp2 rv rc (Z.sub_with_get_borrow_full s (cstZ rc' c') x (cstZ ry y)))
; (forall rv rc s r0 rny ry y x,
0 ∈ r0 -> (ry <= -n rny)%zrange
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ r0 0) (cstZ rny (-cstZ ry y)) x)
= dlet2_opp2 rv rc (Z.sub_get_borrow_full s x (cstZ ry y)))
; (forall rv rc s rcc cc rny ry y x,
cc < 0 -> cc ∈ rcc -> (ry <= -n rny)%zrange
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ rcc ('cc)) (cstZ rny (-cstZ ry y)) x)
= dlet2_opp2 rv rc (Z.sub_with_get_borrow_full s (cstZ (-rcc) ('(-cc))) x (cstZ ry y)))
; (forall rv rc s r0 rny ry y x,
0 ∈ r0 -> (ry <= -n rny)%zrange
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ r0 0) x (cstZ rny (-cstZ ry y)))
= dlet2_opp2 rv rc (Z.sub_get_borrow_full s x (cstZ ry y)))
; (forall rv rc s rcc cc rny ry y x,
cc < 0 -> cc ∈ rcc -> (ry <= -n rny)%zrange
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ rcc ('cc)) x (cstZ rny (-cstZ ry y)))
= dlet2_opp2 rv rc (Z.sub_with_get_borrow_full s (cstZ (-rcc) ('(-cc))) x (cstZ ry y)))
; (forall rv rc s rnc rc' c' ryy yy x,
yy <= 0 -> yy ∈ ryy -> (rc' <= -n rnc)%zrange
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ rnc (-cstZ rc' c')) (cstZ ryy ('yy)) x)
= dlet2_opp2 rv rc (Z.sub_with_get_borrow_full s (cstZ rc' c') x (cstZ (-ryy) ('(-yy)))))
; (forall rv rc s rnc rc' c' ryy yy x,
yy <= 0 -> yy ∈ ryy -> (rc' <= -n rnc)%zrange
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ rnc (-cstZ rc' c')) x (cstZ ryy ('yy)))
= dlet2_opp2 rv rc (Z.sub_with_get_borrow_full s (cstZ rc' c') x (cstZ (-ryy) ('(-yy)))))
; (forall rv rc s rcc cc ryy yy x,
yy <= 0 -> cc <= 0 -> yy + cc < 0 (* at least one must be strictly negative *) -> yy ∈ ryy -> cc ∈ rcc
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ rcc ('cc)) (cstZ ryy ('yy)) x)
= dlet2_opp2 rv rc (Z.sub_with_get_borrow_full s (cstZ (-rcc) ('(-cc))) x (cstZ (-ryy) ('(-yy)))))
; (forall rv rc s rcc cc ryy yy x,
yy <= 0 -> cc <= 0 -> yy + cc < 0 (* at least one must be strictly negative *) -> yy ∈ ryy -> cc ∈ rcc
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ rcc ('cc)) x (cstZ ryy ('yy)))
= dlet2_opp2 rv rc (Z.sub_with_get_borrow_full s (cstZ (-rcc) ('(-cc))) x (cstZ (-ryy) ('(-yy)))))
; (forall rs s rxx xx ryy yy,
s ∈ rs -> xx ∈ rxx -> yy ∈ ryy
-> Z.add_get_carry_full (cstZ rs ('s)) (cstZ rxx ('xx)) (cstZ ryy ('yy))
= litZZ (Z.add_get_carry_full s xx yy))
; (forall rs s r0 ry y,
s ∈ rs -> 0 ∈ r0 -> (ry <= r[0~>s-1])%zrange
-> Z.add_get_carry_full (cstZ rs ('s)) (cstZ r0 0) (cstZ ry y)
= (cstZ ry y, cstZ r[0~>0] 0))
; (forall rs s r0 ry y,
s ∈ rs -> 0 ∈ r0 -> (ry <= r[0~>s-1])%zrange
-> Z.add_get_carry_full (cstZ rs ('s)) (cstZ ry y) (cstZ r0 0)
= (cstZ ry y, cstZ r[0~>0] 0))
; (forall r0 x y, 0 ∈ r0 -> Z.add_with_carry (cstZ r0 0) x y = x + y)
; (forall rs s rcc cc rxx xx ryy yy,
s ∈ rs -> cc ∈ rcc -> xx ∈ rxx -> yy ∈ ryy
-> Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rcc ('cc)) (cstZ rxx ('xx)) (cstZ ryy ('yy))
= litZZ (Z.add_with_get_carry_full s cc xx yy))
; (forall rs s r0c r0x ry y,
s ∈ rs -> 0 ∈ r0c -> 0 ∈ r0x -> (ry <= r[0~>s-1])%zrange
-> Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ r0c 0) (cstZ r0x 0) (cstZ ry y)
= (cstZ ry y, cstZ r[0~>0] 0))
; (forall rs s r0c r0x ry y,
s ∈ rs -> 0 ∈ r0c -> 0 ∈ r0x -> (ry <= r[0~>s-1])%zrange
-> Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ r0c 0) (cstZ ry y) (cstZ r0x 0)
= (cstZ ry y, cstZ r[0~>0] 0))
; (forall rv rc s r0 x y, (* carry = 0: ADC x y -> ADD x y *)
0 ∈ r0
-> cstZZ rv rc (Z.add_with_get_carry_full s (cstZ r0 0) x y)
= dlet2 rv rc (Z.add_get_carry_full s x y))
; (forall rv rc rs s rc' c' r0x r0y, (* ADC 0 0 -> (ADX 0 0, 0) *) (* except we don't do ADX, because C stringification doesn't handle it *)
0 ∈ r0x -> 0 ∈ r0y -> (rc' <= r[0~>s-1])%zrange -> 0 ∈ rc -> s ∈ rs
-> cstZZ rv rc (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc' c') (cstZ r0x 0) (cstZ r0y 0))
= (dlet vc := (cstZZ rv rc (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc' c') (cstZ r0x 0) (cstZ r0y 0))) in
(cstZ rv (fst (cstZZ rv rc vc)),
cstZ r[0~>0] 0)))
(* let-bind any adc/sbb/mulx *)
; (forall rv rc s c x y,
cstZZ rv rc (Z.add_with_get_carry_full s c x y)
= dlet2 rv rc (Z.add_with_get_carry_full s c x y))
; (forall rv c x y,
cstZ rv (Z.add_with_carry c x y)
= (dlet vc := cstZ rv (Z.add_with_carry c x y) in
cstZ rv vc))
; (forall rv rc s x y,
cstZZ rv rc (Z.add_get_carry_full s x y)
= dlet2 rv rc (Z.add_get_carry_full s x y))
; (forall rv rc s c x y,
cstZZ rv rc (Z.sub_with_get_borrow_full s c x y)
= dlet2 rv rc (Z.sub_with_get_borrow_full s c x y))
; (forall rv rc s x y,
cstZZ rv rc (Z.sub_get_borrow_full s x y)
= dlet2 rv rc (Z.sub_get_borrow_full s x y))
; (forall rv rc s x y,
cstZZ rv rc (Z.mul_split s x y)
= dlet2 rv rc (Z.mul_split s x y))
]
; mymap
do_again
[ (* [do_again], so that if one of the arguments is concrete, we automatically get the rewrite rule for [Z_cast] applying to it *)
(forall rx ry x y, cstZZ rx ry (x, y) = (cstZ rx x, cstZ ry y))
]
; mymap
dont_do_again
[(forall r1 r2 x, (r2 <= n r1)%zrange -> cstZ r1 (cstZ r2 x) = cstZ r2 x)
]
]%Z%zrange.
Definition strip_literal_casts_rewrite_rulesT : list (bool * Prop)
:= [dont_do_again (forall rx x, x ∈ rx -> cstZ rx ('x) = 'x)]%Z%zrange.
Definition add_assoc_left_rewrite_rulesT : list (bool * Prop)
:= Eval cbv [myapp mymap myflatten] in
myflatten
[mymap
dont_do_again
[(forall x y z, x + (y + z) = (x + y) + z)
; (forall x y z, x + (y + z) = (x + y) + z)%nat
]
].
Definition flatten_thunked_rects_rewrite_rulesT : list (bool * Prop)
:= [dont_do_again (forall P t f b, @Thunked.bool_rect P t f b = @bool_rect_nodep P (t tt) (f tt) b)].
Definition relax_bitwidth_adc_sbb_rewrite_rulesT (which_bitwidths : list Z) : list (bool * Prop)
:= Eval cbv [myapp mymap myflatten] in
mymap
dont_do_again
[(forall rv rc' rs s rc c rx x ry y,
(((ZRange.normalize rc + ZRange.normalize rx + ZRange.normalize ry) / ZRange.normalize rs) <= rc' <= rv)%zrange ->
List.existsb (Z.eqb (Z.log2 s)) which_bitwidths = true ->
cstZZ rv rc' (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc c) (cstZ rx x) (cstZ ry y))
= cstZZ rv rv (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc c) (cstZ rx x) (cstZ ry y)))
; (forall rv rc' rs s rx x ry y,
(((ZRange.normalize rx + ZRange.normalize ry) / ZRange.normalize rs) <= rc' <= rv)%zrange ->
List.existsb (Z.eqb (Z.log2 s)) which_bitwidths = true ->
cstZZ rv rc' (Z.add_get_carry_full (cstZ rs ('s)) (cstZ rx x) (cstZ ry y))
= cstZZ rv rv (Z.add_get_carry_full (cstZ rs ('s)) (cstZ rx x) (cstZ ry y)))
; (forall rv rc' rs s rc c rx x ry y,
(- ((ZRange.normalize rx - ZRange.normalize ry - ZRange.normalize rc) / ZRange.normalize rs) <= rc' <= rv)%zrange ->
List.existsb (Z.eqb (Z.log2 s)) which_bitwidths = true ->
cstZZ rv rc' (Z.sub_with_get_borrow_full (cstZ rs ('s)) (cstZ rc c) (cstZ rx x) (cstZ ry y))
= cstZZ rv rv (Z.sub_with_get_borrow_full (cstZ rs ('s)) (cstZ rc c) (cstZ rx x) (cstZ ry y)))
; (forall rv rc' rs s rx x ry y,
(- ((ZRange.normalize rx - ZRange.normalize ry) / ZRange.normalize rs) <= rc' <= rv)%zrange ->
List.existsb (Z.eqb (Z.log2 s)) which_bitwidths = true ->
cstZZ rv rc' (Z.sub_get_borrow_full (cstZ rs ('s)) (cstZ rx x) (cstZ ry y))
= cstZZ rv rv (Z.sub_get_borrow_full (cstZ rs ('s)) (cstZ rx x) (cstZ ry y)))
].
Section fancy.
Context (invert_low invert_high : Z (*log2wordmax*) -> Z -> option Z)
(value_range flag_range : zrange).
Definition fancy_rewrite_rulesT : list (bool * Prop)
:= [].
Local Coercion ZRange.constant : Z >-> zrange. (* for ease of use with sanity-checking bounds *)
Local Notation bounds1_good f
:= (fun (output x_bs : zrange)
=> is_tighter_than_bool (f (ZRange.normalize x_bs)) (ZRange.normalize output) = true).
Local Notation bounds2_good f
:= (fun (output x_bs y_bs : zrange)
=> is_tighter_than_bool (f (ZRange.normalize x_bs) (ZRange.normalize y_bs)) (ZRange.normalize output) = true).
Local Notation range_in_bitwidth r s
:= (is_tighter_than_bool (ZRange.normalize r) r[0~>s-1]%zrange = true).
Local Notation shiftl_good := (bounds2_good ZRange.shiftl).
Local Notation shiftr_good := (bounds2_good ZRange.shiftr).
Local Notation land_good := (bounds2_good ZRange.land).
Local Notation mul_good := (bounds2_good ZRange.mul).
Local Notation cc_m_good output s := (bounds1_good (ZRange.cc_m s) output).
Local Notation lit_good x rx := (is_bounded_by_bool x (ZRange.normalize rx)).
Definition fancy_with_casts_rewrite_rulesT : list (bool * Prop)
:= Eval cbv [myapp mymap myflatten] in
myflatten
[mymap
dont_do_again
[(*
(Z.add_get_carry_concrete 2^256) @@@ (?x, ?y << 128) --> (add 128) @@@ (x, y)
(Z.add_get_carry_concrete 2^256) @@@ (?x << 128, ?y) --> (add 128) @@@ (y, x)
(Z.add_get_carry_concrete 2^256) @@@ (?x, ?y >> 128) --> (add (- 128)) @@@ (x, y)
(Z.add_get_carry_concrete 2^256) @@@ (?x >> 128, ?y) --> (add (- 128)) @@@ (y, x)
(Z.add_get_carry_concrete 2^256) @@@ (?x, ?y) --> (add 0) @@@ (y, x)
*)
(forall r1 r2 rs s rx x rshiftl rland ry y rmask mask roffset offset,
s = 2^Z.log2 s -> s ∈ rs -> offset ∈ roffset -> mask ∈ rmask -> shiftl_good rshiftl rland offset -> land_good rland ry mask -> range_in_bitwidth rshiftl s -> (mask = Z.ones (Z.log2 s - offset)) -> (0 <= offset <= Z.log2 s)
-> cstZZ r1 r2 (Z.add_get_carry_full (cstZ rs ('s)) (cstZ rx x) (cstZ rshiftl ((cstZ rland (cstZ ry y &' cstZ rmask ('mask))) << cstZ roffset ('offset))))
= cstZZ r1 r2 (ident.fancy.add (('(Z.log2 s), 'offset), (cstZ rx x, cstZ ry y))))
; (forall r1 r2 rs s rx x rshiftl rland ry y rmask mask roffset offset,
(s = 2^Z.log2 s) -> (mask = Z.ones (Z.log2 s - offset)) -> (0 <= offset <= Z.log2 s) -> s ∈ rs -> mask ∈ rmask -> offset ∈ roffset -> shiftl_good rshiftl rland offset -> land_good rland ry mask -> range_in_bitwidth rshiftl s
-> cstZZ r1 r2 (Z.add_get_carry_full (cstZ rs ('s)) (cstZ rx x) (cstZ rshiftl (cstZ rland (cstZ ry y &' cstZ rmask ('mask)) << cstZ roffset ('offset))))
= cstZZ r1 r2 (ident.fancy.add (('(Z.log2 s), 'offset), (cstZ rx x, cstZ ry y))))
; (forall r1 r2 rs s rshiftl rland ry y rmask mask roffset offset rx x,
s ∈ rs -> mask ∈ rmask -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftl_good rshiftl rland offset -> land_good rland ry mask -> range_in_bitwidth rshiftl s -> (mask = Z.ones (Z.log2 s - offset)) -> (0 <= offset <= Z.log2 s)
-> cstZZ r1 r2 (Z.add_get_carry_full (cstZ rs ('s)) (cstZ rshiftl (Z.shiftl (cstZ rland (Z.land (cstZ ry y) (cstZ rmask ('mask)))) (cstZ roffset ('offset)))) (cstZ rx x))
= cstZZ r1 r2 (ident.fancy.add (('(Z.log2 s), 'offset), (cstZ rx x, cstZ ry y))))
; (forall r1 r2 rs s rx x rshiftr ry y roffset offset,
s ∈ rs -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftr_good rshiftr ry offset -> range_in_bitwidth rshiftr s
-> cstZZ r1 r2 (Z.add_get_carry_full (cstZ rs ('s)) (cstZ rx x) (cstZ rshiftr (Z.shiftr (cstZ ry y) (cstZ roffset ('offset)))))
= cstZZ r1 r2 (ident.fancy.add (('(Z.log2 s), '(-offset)), (cstZ rx x, cstZ ry y)))%core)
; (forall r1 r2 rs s rshiftr ry y roffset offset rx x,
s ∈ rs -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftr_good rshiftr ry offset -> range_in_bitwidth rshiftr s
-> cstZZ r1 r2 (Z.add_get_carry_full (cstZ rs ('s)) (cstZ rshiftr (Z.shiftr (cstZ ry y) (cstZ roffset ('offset)))) (cstZ rx x))
= cstZZ r1 r2 (ident.fancy.add (('(Z.log2 s), '(-offset)), (cstZ rx x, cstZ ry y))%core))
; (forall r1 r2 rs s rx x ry y,
s ∈ rs -> (s = 2^Z.log2 s) -> range_in_bitwidth ry s
-> cstZZ r1 r2 (Z.add_get_carry_full (cstZ rs ('s)) (cstZ rx x) (cstZ ry y))
= cstZZ r1 r2 (ident.fancy.add (('(Z.log2 s), '0), (cstZ rx x, cstZ ry y))))
(*
(Z.add_with_get_carry_concrete 2^256) @@@ (?c, ?x, ?y << 128) --> (addc 128) @@@ (c, x, y)
(Z.add_with_get_carry_concrete 2^256) @@@ (?c, ?x << 128, ?y) --> (addc 128) @@@ (c, y, x)
(Z.add_with_get_carry_concrete 2^256) @@@ (?c, ?x, ?y >> 128) --> (addc (- 128)) @@@ (c, x, y)
(Z.add_with_get_carry_concrete 2^256) @@@ (?c, ?x >> 128, ?y) --> (addc (- 128)) @@@ (c, y, x)
(Z.add_with_get_carry_concrete 2^256) @@@ (?c, ?x, ?y) --> (addc 0) @@@ (c, y, x)
*)
; (forall r1 r2 rs s rc c rx x rshiftl rland ry y rmask mask roffset offset,
s ∈ rs -> mask ∈ rmask -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftl_good rshiftl rland offset -> land_good rland ry mask -> range_in_bitwidth rshiftl s -> (mask = Z.ones (Z.log2 s - offset)) -> (0 <= offset <= Z.log2 s)
-> cstZZ r1 r2 (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc c) (cstZ rx x) (cstZ rshiftl (Z.shiftl (cstZ rland (Z.land (cstZ ry y) (cstZ rmask ('mask)))) (cstZ roffset ('offset)))))
= cstZZ r1 r2 (ident.fancy.addc (('(Z.log2 s), 'offset), (cstZ rc c, cstZ rx x, cstZ ry y))))
; (forall r1 r2 rs s rc c rshiftl rland ry y rmask mask roffset offset rx x,
s ∈ rs -> mask ∈ rmask -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftl_good rshiftl rland offset -> range_in_bitwidth rshiftl s -> land_good rland ry mask -> (mask = Z.ones (Z.log2 s - offset)) -> (0 <= offset <= Z.log2 s)
-> cstZZ r1 r2 (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc c) (cstZ rshiftl (Z.shiftl (cstZ rland (Z.land (cstZ ry y) (cstZ rmask ('mask)))) (cstZ roffset ('offset)))) (cstZ rx x))
= cstZZ r1 r2 (ident.fancy.addc (('(Z.log2 s), 'offset), (cstZ rc c, cstZ rx x, cstZ ry y))))
; (forall r1 r2 rs s rc c rx x rshiftr ry y roffset offset,
s ∈ rs -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftr_good rshiftr ry offset -> range_in_bitwidth rshiftr s
-> cstZZ r1 r2 (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc c) (cstZ rx x) (cstZ rshiftr (Z.shiftr (cstZ ry y) (cstZ roffset ('offset)))))
= cstZZ r1 r2 (ident.fancy.addc (('(Z.log2 s), '(-offset)), (cstZ rc c, cstZ rx x, cstZ ry y))%core))
; (forall r1 r2 rs s rc c rshiftr ry y roffset offset rx x,
s ∈ rs -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftr_good rshiftr ry offset -> range_in_bitwidth rshiftr s
-> cstZZ r1 r2 (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc c) (cstZ rshiftr (Z.shiftr (cstZ ry y) (cstZ roffset ('offset)))) (cstZ rx x))
= cstZZ r1 r2 (ident.fancy.addc (('(Z.log2 s), '(-offset)), (cstZ rc c, cstZ rx x, cstZ ry y))%core))
; (forall r1 r2 rs s rc c rx x ry y,
s ∈ rs -> (s = 2^Z.log2 s) -> range_in_bitwidth ry s
-> cstZZ r1 r2 (Z.add_with_get_carry_full (cstZ rs ('s)) (cstZ rc c) (cstZ rx x) (cstZ ry y))
= cstZZ r1 r2 (ident.fancy.addc (('(Z.log2 s), '0), (cstZ rc c, cstZ rx x, cstZ ry y))))
(*
(Z.sub_get_borrow_concrete 2^256) @@@ (?x, ?y << 128) --> (sub 128) @@@ (x, y)
(Z.sub_get_borrow_concrete 2^256) @@@ (?x, ?y >> 128) --> (sub (- 128)) @@@ (x, y)
(Z.sub_get_borrow_concrete 2^256) @@@ (?x, ?y) --> (sub 0) @@@ (y, x)
*)
; (forall r1 r2 rs s rx x rshiftl rland ry y rmask mask roffset offset,
s ∈ rs -> mask ∈ rmask -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftl_good rshiftl rland offset -> range_in_bitwidth rshiftl s -> land_good rland ry mask -> (mask = Z.ones (Z.log2 s - offset)) -> (0 <= offset <= Z.log2 s)
-> cstZZ r1 r2 (Z.sub_get_borrow_full (cstZ rs ('s)) (cstZ rx x) (cstZ rshiftl (Z.shiftl (cstZ rland (Z.land (cstZ ry y) (cstZ rmask ('mask)))) (cstZ roffset ('offset)))))
= cstZZ r1 r2 (ident.fancy.sub (('(Z.log2 s), 'offset), (cstZ rx x, cstZ ry y))))
; (forall r1 r2 rs s rx x rshiftr ry y roffset offset,
s ∈ rs -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftr_good rshiftr ry offset -> range_in_bitwidth rshiftr s
-> cstZZ r1 r2 (Z.sub_get_borrow_full (cstZ rs ('s)) (cstZ rx x) (cstZ rshiftr (Z.shiftr (cstZ ry y) (cstZ roffset ('offset)))))
= cstZZ r1 r2 (ident.fancy.sub (('(Z.log2 s), '(-offset)), (cstZ rx x, cstZ ry y))%core))
; (forall r1 r2 rs s rx x ry y,
s ∈ rs -> (s = 2^Z.log2 s) -> range_in_bitwidth ry s
-> cstZZ r1 r2 (Z.sub_get_borrow_full (cstZ rs ('s)) (cstZ rx x) (cstZ ry y))
= cstZZ r1 r2 (ident.fancy.sub (('(Z.log2 s), '0), (cstZ rx x, cstZ ry y))))
(*
(Z.sub_with_get_borrow_concrete 2^256) @@@ (?c, ?x, ?y << 128) --> (subb 128) @@@ (c, x, y)
(Z.sub_with_get_borrow_concrete 2^256) @@@ (?c, ?x, ?y >> 128) --> (subb (- 128)) @@@ (c, x, y)
(Z.sub_with_get_borrow_concrete 2^256) @@@ (?c, ?x, ?y) --> (subb 0) @@@ (c, y, x)
*)
; (forall r1 r2 rs s rb b rx x rshiftl rland ry y rmask mask roffset offset,
s ∈ rs -> mask ∈ rmask -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftl_good rshiftl rland offset -> range_in_bitwidth rshiftl s -> land_good rland ry mask -> (mask = Z.ones (Z.log2 s - offset)) -> (0 <= offset <= Z.log2 s)
-> cstZZ r1 r2 (Z.sub_with_get_borrow_full (cstZ rs ('s)) (cstZ rb b) (cstZ rx x) (cstZ rshiftl (Z.shiftl (cstZ rland (Z.land (cstZ ry y) (cstZ rmask ('mask)))) (cstZ roffset ('offset)))))
= cstZZ r1 r2 (ident.fancy.subb (('(Z.log2 s), 'offset), (cstZ rb b, cstZ rx x, cstZ ry y))))
; (forall r1 r2 rs s rb b rx x rshiftr ry y roffset offset,
s ∈ rs -> offset ∈ roffset -> (s = 2^Z.log2 s) -> shiftr_good rshiftr ry offset -> range_in_bitwidth rshiftr s
-> cstZZ r1 r2 (Z.sub_with_get_borrow_full (cstZ rs ('s)) (cstZ rb b) (cstZ rx x) (cstZ rshiftr (Z.shiftr (cstZ ry y) (cstZ roffset ('offset)))))
= cstZZ r1 r2 (ident.fancy.subb (('(Z.log2 s), '(-offset)), (cstZ rb b, cstZ rx x, cstZ ry y))%core))
; (forall r1 r2 rs s rb b rx x ry y,
s ∈ rs -> (s = 2^Z.log2 s) -> range_in_bitwidth ry s
-> cstZZ r1 r2 (Z.sub_with_get_borrow_full (cstZ rs ('s)) (cstZ rb b) (cstZ rx x) (cstZ ry y))
= cstZZ r1 r2 (ident.fancy.subb (('(Z.log2 s), '0), (cstZ rb b, cstZ rx x, cstZ ry y))))
(*(Z.rshi_concrete 2^256 ?n) @@@ (?c, ?x, ?y) --> (rshi n) @@@ (x, y)*)
; (forall r rs s rx x ry y rn n,
s ∈ rs -> n ∈ rn -> (s = 2^Z.log2 s)
-> cstZ r (Z.rshi (cstZ rs ('s)) (cstZ rx x) (cstZ ry y) (cstZ rn ('n)))
= cstZ r (ident.fancy.rshi (('(Z.log2 s), 'n), (cstZ rx x, cstZ ry y))))
(*
Z.zselect @@@ (Z.cc_m_concrete 2^256 ?c, ?x, ?y) --> selm @@@ (c, x, y)
Z.zselect @@@ (?c &' 1, ?x, ?y) --> sell @@@ (c, x, y)
Z.zselect @@@ (?c, ?x, ?y) --> selc @@@ (c, x, y)
*)
; (forall r rccm rs s rc c rx x ry y,
s ∈ rs -> (s = 2^Z.log2 s) -> cc_m_good rccm s rc
-> cstZ r (Z.zselect (cstZ rccm (Z.cc_m (cstZ rs ('s)) (cstZ rc c))) (cstZ rx x) (cstZ ry y))
= cstZ r (ident.fancy.selm ('(Z.log2 s), (cstZ rc c, cstZ rx x, cstZ ry y))))
; (forall r rland r1 rc c rx x ry y,
1 ∈ r1 -> land_good rland 1 rc
-> cstZ r (Z.zselect (cstZ rland (cstZ r1 1 &' cstZ rc c)) (cstZ rx x) (cstZ ry y))
= cstZ r (ident.fancy.sell (cstZ rc c, cstZ rx x, cstZ ry y)))
; (forall r rland rc c r1 rx x ry y,
1 ∈ r1 -> land_good rland rc 1
-> cstZ r (Z.zselect (cstZ rland (cstZ rc c &' cstZ r1 1)) (cstZ rx x) (cstZ ry y))
= cstZ r (ident.fancy.sell (cstZ rc c, cstZ rx x, cstZ ry y)))
; (forall r c x y,
cstZ r (Z.zselect c x y)
= cstZ r (ident.fancy.selc (c, x, y)))
(*Z.add_modulo @@@ (?x, ?y, ?m) --> addm @@@ (x, y, m)*)
; (forall x y m,
Z.add_modulo x y m
= ident.fancy.addm (x, y, m))
(*
Z.mul @@@ (?x &' (2^128-1), ?y &' (2^128-1)) --> mulll @@@ (x, y)
Z.mul @@@ (?x &' (2^128-1), ?y >> 128) --> mullh @@@ (x, y)
Z.mul @@@ (?x >> 128, ?y &' (2^128-1)) --> mulhl @@@ (x, y)
Z.mul @@@ (?x >> 128, ?y >> 128) --> mulhh @@@ (x, y)
*)
(* literal on left *)
; (forall r rx x rland ry y rmask mask,
plet s := (2*Z.log2_up mask)%Z in
plet xo := invert_low s x in
plet xv := match xo with Some x => x | None => 0 end in
xo <> None -> x ∈ rx -> mask ∈ rmask -> (mask = 2^(s/2)-1) -> land_good rland ry mask
-> cstZ r (cstZ rx ('x) * cstZ rland (Z.land (cstZ ry y) (cstZ rmask ('mask))))
= cstZ r (ident.fancy.mulll (('s), ('xv, cstZ ry y))))
; (forall r rx x rland rmask mask ry y,
plet s := (2*Z.log2_up mask)%Z in
plet xo := invert_low s x in
plet xv := match xo with Some x => x | None => 0 end in
xo <> None -> x ∈ rx -> mask ∈ rmask -> (mask = 2^(s/2)-1) -> land_good rland mask ry
-> cstZ r (cstZ rx ('x) * cstZ rland (Z.land (cstZ rmask ('mask)) (cstZ ry y)))
= cstZ r (ident.fancy.mulll (('s), ('xv, cstZ ry y))))
; (forall r rx x rshiftr ry y roffset offset,
plet s := (2*offset)%Z in
plet xo := invert_low s x in
plet xv := match xo with Some x => x | None => 0 end in
xo <> None -> x ∈ rx -> offset ∈ roffset -> shiftr_good rshiftr ry offset
-> cstZ r (cstZ rx ('x) * cstZ rshiftr (Z.shiftr (cstZ ry y) (cstZ roffset ('offset))))
= cstZ r (ident.fancy.mullh (('s), ('xv, cstZ ry y))))
; (forall r rx x rland rmask mask ry y,
plet s := (2*Z.log2_up mask)%Z in
plet xo := invert_high s x in
plet xv := match xo with Some x => x | None => 0 end in
xo <> None -> x ∈ rx -> mask ∈ rmask -> (mask = 2^(s/2)-1) -> land_good rland mask ry
-> cstZ r (cstZ rx ('x) * cstZ rland (Z.land (cstZ rmask ('mask)) (cstZ ry y)))
= cstZ r (ident.fancy.mulhl (('s), ('xv, cstZ ry y))))
; (forall r rx x rland ry y rmask mask,
plet s := (2*Z.log2_up mask)%Z in
plet xo := invert_high s x in
plet xv := match xo with Some x => x | None => 0 end in
xo <> None -> x ∈ rx -> mask ∈ rmask -> (mask = 2^(s/2)-1) -> land_good rland ry mask
-> cstZ r (cstZ rx ('x) * cstZ rland (Z.land (cstZ ry y) (cstZ rmask ('mask))))
= cstZ r (ident.fancy.mulhl (('s), ('xv, cstZ ry y))))
; (forall r rx x rshiftr ry y roffset offset,
plet s := (2*offset)%Z in
plet xo := invert_high s x in
plet xv := match xo with Some x => x | None => 0 end in
xo <> None -> x ∈ rx -> offset ∈ roffset -> shiftr_good rshiftr ry offset
-> cstZ r (cstZ rx ('x) * cstZ rshiftr (Z.shiftr (cstZ ry y) (cstZ roffset ('offset))))
= cstZ r (ident.fancy.mulhh (('s), ('xv, cstZ ry y))))
(* literal on right *)
; (forall r rland rmask mask rx x ry y,
plet s := (2*Z.log2_up mask)%Z in
plet yo := invert_low s y in
plet yv := match yo with Some y => y | None => 0 end in
yo <> None -> y ∈ ry -> mask ∈ rmask -> (mask = 2^(s/2)-1) -> land_good rland mask rx
-> cstZ r (cstZ rland (Z.land (cstZ rmask ('mask)) (cstZ rx x)) * cstZ ry ('y))
= cstZ r (ident.fancy.mulll (('s), (cstZ rx x, 'yv))))
; (forall r rland rx x rmask mask ry y,
plet s := (2*Z.log2_up mask)%Z in
plet yo := invert_low s y in
plet yv := match yo with Some y => y | None => 0 end in
yo <> None -> y ∈ ry -> mask ∈ rmask -> (mask = 2^(s/2)-1) -> land_good rland rx mask
-> cstZ r (cstZ rland (Z.land (cstZ rx x) (cstZ rmask ('mask))) * cstZ ry ('y))
= cstZ r (ident.fancy.mulll (('s), (cstZ rx x, 'yv))))
; (forall r rland rmask mask rx x ry y,
plet s := (2*Z.log2_up mask)%Z in
plet yo := invert_high s y in
plet yv := match yo with Some y => y | None => 0 end in
yo <> None -> y ∈ ry -> mask ∈ rmask -> (mask = 2^(s/2)-1) -> land_good rland mask rx
-> cstZ r (cstZ rland (Z.land (cstZ rmask ('mask)) (cstZ rx x)) * cstZ ry ('y))
= cstZ r (ident.fancy.mullh (('s), (cstZ rx x, 'yv))))
; (forall r rland rx x rmask mask ry y,
plet s := (2*Z.log2_up mask)%Z in
plet yo := invert_high s y in
plet yv := match yo with Some y => y | None => 0 end in
yo <> None -> y ∈ ry -> mask ∈ rmask -> (mask = 2^(s/2)-1) -> land_good rland rx mask
-> cstZ r (cstZ rland (Z.land (cstZ rx x) (cstZ rmask ('mask))) * cstZ ry ('y))
= cstZ r (ident.fancy.mullh (('s), (cstZ rx x, 'yv))))
; (forall r rshiftr rx x roffset offset ry y,
plet s := (2*offset)%Z in
plet yo := invert_low s y in
plet yv := match yo with Some y => y | None => 0 end in
yo <> None -> y ∈ ry -> offset ∈ roffset -> shiftr_good rshiftr rx offset
-> cstZ r (cstZ rshiftr (Z.shiftr (cstZ rx x) (cstZ roffset ('offset))) * cstZ ry ('y))
= cstZ r (ident.fancy.mulhl (('s), (cstZ rx x, 'yv))))
; (forall r rshiftr rx x roffset offset ry y,
plet s := (2*offset)%Z in
plet yo := invert_high s y in
plet yv := match yo with Some y => y | None => 0 end in
yo <> None -> y ∈ ry -> offset ∈ roffset -> shiftr_good rshiftr rx offset
-> cstZ r (cstZ rshiftr (Z.shiftr (cstZ rx x) (cstZ roffset ('offset))) * cstZ ry ('y))
= cstZ r (ident.fancy.mulhh (('s), (cstZ rx x, 'yv))))
(* no literal *)
; (forall r rland1 rmask1 mask1 rx x rland2 rmask2 mask2 ry y,
plet s := (2*Z.log2_up mask1)%Z in
mask1 ∈ rmask1 -> mask2 ∈ rmask2 -> (mask1 = 2^(s/2)-1) -> (mask2 = 2^(s/2)-1) -> land_good rland1 mask1 rx -> land_good rland2 mask2 ry
-> cstZ r (cstZ rland1 (Z.land (cstZ rmask1 ('mask1)) (cstZ rx x)) * cstZ rland2 (Z.land (cstZ rmask2 ('mask2)) (cstZ ry y)))
= cstZ r (ident.fancy.mulll (('s), (cstZ rx x, cstZ ry y))))
; (forall r rland1 rx x rmask1 mask1 rland2 rmask2 mask2 ry y,
plet s := (2*Z.log2_up mask1)%Z in
mask1 ∈ rmask1 -> mask2 ∈ rmask2 -> (mask1 = 2^(s/2)-1) -> (mask2 = 2^(s/2)-1) -> land_good rland1 rx mask1 -> land_good rland2 mask2 ry
-> cstZ r (cstZ rland1 (Z.land (cstZ rx x) (cstZ rmask1 ('mask1))) * cstZ rland2 (Z.land (cstZ rmask2 ('mask2)) (cstZ ry y)))
= cstZ r (ident.fancy.mulll (('s), (cstZ rx x, cstZ ry y))))
; (forall r rland1 rmask1 mask1 rx x rland2 ry y rmask2 mask2,
plet s := (2*Z.log2_up mask1)%Z in
mask1 ∈ rmask1 -> mask2 ∈ rmask2 -> (mask1 = 2^(s/2)-1) -> (mask2 = 2^(s/2)-1) -> land_good rland1 mask1 rx -> land_good rland2 ry mask2
-> cstZ r (cstZ rland1 (Z.land (cstZ rmask1 ('mask1)) (cstZ rx x)) * cstZ rland2 (Z.land (cstZ ry y) (cstZ rmask2 ('mask2))))
= cstZ r (ident.fancy.mulll (('s), (cstZ rx x, cstZ ry y))))
; (forall r rland1 rx x rmask1 mask1 rland2 ry y rmask2 mask2,
plet s := (2*Z.log2_up mask1)%Z in
mask1 ∈ rmask1 -> mask2 ∈ rmask2 -> (mask1 = 2^(s/2)-1) -> (mask2 = 2^(s/2)-1) -> land_good rland1 rx mask1 -> land_good rland2 ry mask2
-> cstZ r (cstZ rland1 (Z.land (cstZ rx x) (cstZ rmask1 ('mask1))) * cstZ rland2 (Z.land (cstZ ry y) (cstZ rmask2 ('mask2))))
= cstZ r (ident.fancy.mulll (('s), (cstZ rx x, cstZ ry y))))
; (forall r rland1 rmask mask rx x rshiftr2 ry y roffset offset,
plet s := (2*offset)%Z in
mask ∈ rmask -> offset ∈ roffset -> (mask = 2^(s/2)-1) -> land_good rland1 mask rx -> shiftr_good rshiftr2 ry offset
-> cstZ r (cstZ rland1 (Z.land (cstZ rmask ('mask)) (cstZ rx x)) * cstZ rshiftr2 (Z.shiftr (cstZ ry y) (cstZ roffset ('offset))))
= cstZ r (ident.fancy.mullh (('s), (cstZ rx x, cstZ ry y))))
; (forall r rland1 rx x rmask mask rshiftr2 ry y roffset offset,
plet s := (2*offset)%Z in
mask ∈ rmask -> offset ∈ roffset -> (mask = 2^(s/2)-1) -> land_good rland1 rx mask -> shiftr_good rshiftr2 ry offset
-> cstZ r (cstZ rland1 (Z.land (cstZ rx x) (cstZ rmask ('mask))) * cstZ rshiftr2 (Z.shiftr (cstZ ry y) (cstZ roffset ('offset))))
= cstZ r (ident.fancy.mullh (('s), (cstZ rx x, cstZ ry y))))
; (forall r rshiftr1 rx x roffset offset rland2 rmask mask ry y,
plet s := (2*offset)%Z in
mask ∈ rmask -> offset ∈ roffset -> (mask = 2^(s/2)-1) -> shiftr_good rshiftr1 rx offset -> land_good rland2 mask ry
-> cstZ r (cstZ rshiftr1 (Z.shiftr (cstZ rx x) (cstZ roffset ('offset))) * cstZ rland2 (Z.land (cstZ rmask ('mask)) (cstZ ry y)))
= cstZ r (ident.fancy.mulhl (('s), (cstZ rx x, cstZ ry y))))
; (forall r rshiftr1 rx x roffset offset rland2 ry y rmask mask,
plet s := (2*offset)%Z in
mask ∈ rmask -> offset ∈ roffset -> (mask = 2^(s/2)-1) -> shiftr_good rshiftr1 rx offset -> land_good rland2 ry mask
-> cstZ r (cstZ rshiftr1 (Z.shiftr (cstZ rx x) (cstZ roffset ('offset))) * cstZ rland2 (Z.land (cstZ ry y) (cstZ rmask ('mask))))
= cstZ r (ident.fancy.mulhl (('s), (cstZ rx x, cstZ ry y))))
; (forall r rshiftr1 rx x roffset1 offset1 rshiftr2 ry y roffset2 offset2,
plet s := (2*offset1)%Z in
offset1 ∈ roffset1 -> offset2 ∈ roffset2 -> (offset1 = offset2) -> shiftr_good rshiftr1 rx offset1 -> shiftr_good rshiftr2 ry offset2
-> cstZ r (cstZ rshiftr1 (Z.shiftr (cstZ rx x) (cstZ roffset1 ('offset1))) * cstZ rshiftr2 (Z.shiftr (cstZ ry y) (cstZ roffset2 ('offset2))))
= cstZ r (ident.fancy.mulhh (('s), (cstZ rx x, cstZ ry y))))
(** Dummy rule to make sure we use the two value ranges; this can be removed *)
; (forall rx x,
((is_tighter_than_bool rx value_range = true)
\/ (is_tighter_than_bool rx flag_range = true))
-> cstZ rx x = cstZ rx x)
]%Z%zrange
].
End fancy.
Section with_bitwidth.
Context (bitwidth : Z)
(lgcarrymax : Z).
Local Notation singlewidth_upperbound := (2^bitwidth - 1).
Local Notation singlewidth_range := r[0~>singlewidth_upperbound]%zrange.
Local Notation doublewidth := (cstZ r[0~>2^(2*bitwidth) - 1]).
Local Notation singlewidth := (cstZ singlewidth_range).
Local Notation carrymax := (2^lgcarrymax-1).
Local Notation carrywidth := (cstZ r[0~>carrymax]).
Local Notation singlewidth_carry := (cstZZ singlewidth_range r[0~>carrymax]).
Local Notation alt_singlewidth_carry := (cstZZ singlewidth_range r[0~>2^bitwidth-1]).
Local Notation pairsinglewidth := (cstZZ singlewidth_range singlewidth_range).
Local Notation cstZsingle_to_double l h
:= (doublewidth (Z.combine_at_bitwidth ('bitwidth) (singlewidth l) (singlewidth h))).
Local Notation cstZsingle_to_double_pair lh
:= (cstZsingle_to_double (fst lh) (snd lh)).
Local Notation cstZ_pow2_bitwidth
:= (cstZ r[2^bitwidth~>2^bitwidth] ('(2^bitwidth))).
Definition mul_split_rewrite_rulesT : Datatypes.list (Datatypes.bool * Prop)
:= Eval cbv [myapp mymap myflatten] in
myflatten
[mymap
dont_do_again
[(forall r x, cstZ r (cstZ r x) = cstZ r x) (* when inlining Z.combine_at_bitwidth, casts will sometimes get doubled up, so we need to strip the extra casts *)
; (forall x y,