-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeywords.html
725 lines (671 loc) · 28.8 KB
/
keywords.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>C Language Keywords</TITLE>
<STYLE TYPE="TEXT/CSS">
<!--
.IE3-DUMMY { CONT-SIZE: 100%; }
BODY { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; BACKGROUND-COLOR: #E0E0E0; }
P { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; }
H1 { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; }
H2 { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; }
H3 { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; }
H4 { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; }
H5 { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; }
H6 { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; }
UL { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; }
TD { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; BACKGROUND-COLOR: #FFFFFF; }
.NOBORDER { BACKGROUND-COLOR: #E0E0E0; PADDING: 0pt; }
.NOBORDER TD { FONT-FAMILY: Verdana,Arial,Helvetica,Sans-Serif; BACKGROUND-COLOR: #E0E0E0; PADDING: 0pt; }
.CODE { FONT-FAMILY: Courier New; }
-->
</STYLE>
</HEAD>
<BODY TEXT="#000000" BGCOLOR="#E0E0E0">
<FONT SIZE="5"><B>C Language Keywords</B></FONT>
<HR>
<P>Standard ANSI C recognizes the following keywords:</P>
<P><B>
<A HREF="#auto">auto</A><BR>
<A HREF="#break">break</A><BR>
<A HREF="#switch">case</A><BR>
<A HREF="#int">char</A><BR>
<A HREF="#const">const</A><BR>
<A HREF="#continue">continue</A><BR>
<A HREF="#switch">default</A><BR>
<A HREF="#do">do</A><BR>
<A HREF="#float">double</A><BR>
<A HREF="#if">else</A><BR>
<A HREF="#enum">enum</A><BR>
<A HREF="#extern">extern</A><BR>
<A HREF="#float">float</A><BR>
<A HREF="#for">for</A><BR>
<A HREF="#goto">goto</A><BR>
<A HREF="#if">if</A><BR>
<A HREF="#int">int</A><BR>
<A HREF="#short">long</A><BR>
<A HREF="#register">register</A><BR>
<A HREF="#return">return</A><BR>
<A HREF="#short">short</A><BR>
<A HREF="#short">signed</A><BR>
<A HREF="#sizeof">sizeof</A><BR>
<A HREF="#static">static</A><BR>
<A HREF="#struct">struct</A><BR>
<A HREF="#switch">switch</A><BR>
<A HREF="#typedef">typedef</A><BR>
<A HREF="#union">union</A><BR>
<A HREF="#short">unsigned</A><BR>
<A HREF="#void">void</A><BR>
<A HREF="#volatile">volatile</A><BR>
<A HREF="#while">while</A>
</B></P>
<P>In addition to these standard keywords, GCC4TI recognizes some extended keywords
which do not exist in ANSI C, like <A HREF="gnuexts.html#SEC94">asm</A>, <A HREF="gnuexts.html#SEC69">typeof</A>,
<A HREF="gnuexts.html#SEC93">inline</A>, etc., which are described in details in the section
<A HREF="gnuexts.html">GNU C language extensions</A>. This section also describes extensions
to standard keywords, not only new ones.
<BR><BR>
<B>Note:</B> If square brackets '[...]' are used in syntax descriptions, they mean optional
arguments (as usual in syntax-describing languages), not square brackets as literals.</P>
<HR>
<H2><A NAME="auto"><U>auto</U></A></H2>
<P><B>Defines a local variable as having a local lifetime.</B></P>
<P>Keyword <CODE>auto</CODE> uses the following syntax:</P>
<PRE>[auto] <I>data-definition</I>;
</PRE>
<P>As the local lifetime is the default for local variables, <CODE>auto</CODE> keyword is
extremely rarely used.
<BR><BR>
<B>Note:</B> GNU C extends <CODE>auto</CODE> keyword to allow forward declaration of
<A HREF="gnuexts.html#SEC66">nested functions</A>.</P>
<HR>
<H2><A NAME="break"><U>break</U></A></H2>
<P><B>Passes control out of the compound statement.</B></P>
<P>The break statement causes control to pass to the statement following the
innermost enclosing <A HREF="#while">while</A>, <A HREF="#do">do</A>, <A HREF="#for">for</A>, or
<A HREF="#switch">switch</A> statement. The syntax is simply</P>
<PRE>break;
</PRE>
<HR>
<H2><A NAME="const"><U>const</U></A></H2>
<P><B>Makes variable value or pointer parameter unmodifiable.</B></P>
<P>When <CODE>const</CODE> is used with a variable, it uses the following syntax:</P>
<PRE>const <I>variable-name</I> [ = <I>value</I>];
</PRE>
<P>In this case, the <CODE>const</CODE> modifier allows you to assign an initial
value to a variable that cannot later be changed by the program. For
example,</P>
<PRE>const my_age = 32;
</PRE>
<P>Any assignments to <CODE>'my_age'</CODE> will result in a compiler error. However,
such declaration is quite different than using</P>
<PRE>#define my_age 32
</PRE>
<P>In the first case, the compiler allocates a memory for <CODE>'my_age'</CODE> and stores
the initial value 32 there, but it will not allow any later assignment to this variable.
But, in the second case, all occurences of <CODE>'my_age'</CODE> are simply replaced with 32
by the <A HREF="cpp.html">preprocessor</A>, and no memory will be allocated for it.
<BR><BR>
Warning: a const variable can be indirectly modified by a pointer, as in the following
example:</P>
<PRE>*(int*)&my_age = 35;
</PRE>
<P>When the <CODE>const</CODE> modifier is used with a pointer parameter in a function's parameter
list, it uses the following syntax:</P>
<PRE><I>function-name</I> (const <I>type</I> *<I>var-name</I>)
</PRE>
<P>Then, the function cannot modify the variable that the pointer points to. For example,</P>
<PRE>int printf (const char *format, ...);
</PRE>
<P>Here the <CODE>printf</CODE> function is prevented from modifying the format string.</P>
<HR>
<H2><A NAME="continue"><U>continue</U></A></H2>
<P><B>Passes control to the begining of the loop.</B></P>
<P><CODE>continue</CODE> causes control to pass to the end of the innermost enclosing
<A HREF="#while">while</A>, <A HREF="#do">do</A>, or <A HREF="#for">for</A> statement, at
which point the loop continuation condition is re-evaluated. The syntax is simply</P>
<PRE>continue;
</PRE>
<P>For example,</P>
<PRE>for (i = 0; i < 20; i++)
{
if (array[i] == 0)
continue;
array[i] = 1/array[i];
}
</PRE>
<P>This example changes each element in the array with its reciprocal, but skips elements which
are equal to zero.</P>
<HR>
<H2><A NAME="do"><U>do</U></A></H2>
<P><B>Do-while loop.</B></P>
<P>Keyword <CODE>do</CODE> is usually used together with <A HREF="#while">while</A> to make
another form of repeating statement. Such form of the loop uses the following syntax:</P>
<PRE>do <I>statement</I> while (<I>expression</I>)</PRE>
<P><I>statement</I>, which is usually a compound statement, is executed repeatedly as long as the value of
<I>expression</I> remains non-zero.
The test takes place after each execution of the <I>statement</I>. For example,</P>
<PRE>i = 1; n = 1;
do
{
n *= i;
i++;
} while (i <= factorial);
</PRE>
<HR>
<H2><A NAME="enum"><U>enum</U></A></H2>
<P><B>Defines a set of constants of type int.</B></P>
<P>The syntax for defining constants using <CODE>enum</CODE> is</P>
<PRE>enum [<I>tag</I>] {<I>name</I> [=<I>value</I>], ...};
</PRE>
<P>The set can optionally be given a type tag name with <I>tag</I>. <I>name</I> is the
name of a constant that can optionally be assigned the (constant) value of <I>value</I>,
etc. For example,</P>
<PRE>enum Numbers {One = 1, Two = 2, Three = 3, Four = 4, Five = 5};
</PRE>
<P>If <I>value</I> is missing, then a value is assumed to be the value of the
previous constant in the list + 1. If this is the first constant in the list,
the default value is 0.
<BR><BR>
If you give a type tag name, then you can declare variables of enumerated type using</P>
<PRE>enum <I>tag</I> <I>variable-names</I>;
</PRE>
<P>For example,</P>
<PRE>enum Numbers x, y, z;
</PRE>
<P>declares three variables <CODE>x</CODE>, <CODE>y</CODE> and <CODE>z</CODE>, all of type
<I>Numbers</I> (they are, in fact, integer variables). More precise,
<CODE>'enum <I>tag</I>'</CODE> becomes a new type which is equal in rights with any
built-in type.</P>
<HR>
<H2><A NAME="extern"><U>extern</U></A></H2>
<P><B>Indicates that an identifier is defined elsewhere.</B></P>
<P>Keyword <CODE>extern</CODE> indicates that the actual storage and initial value of a variable,
or body of a function, is defined elsewhere, usually in a separate source code module. So,
it may be applied to data definitions and function prototypes:</P>
<PRE>extern <I>data-definition</I>;
extern <I>function-prototype</I>;
</PRE>
<P>For example,</P>
<PRE>extern int _fmode;
extern void Factorial (int n);
</PRE>
<P>The keyword <CODE>extern</CODE> is optional (i.e. default) for a function prototype.</P>
<HR>
<H2><A NAME="float"><U>float, double</U></A></H2>
<P><B>Floating point data types.</B></P>
<P>The keyword <CODE>float</CODE> usually represents a single precision floating point data type,
and <CODE>double</CODE> represents a double precision floating point data type.
In GCC4TI, both <CODE>float</CODE> and <CODE>double</CODE> (and even <CODE>long double</CODE>)
are the same. The TI-68k calculators running AMS or compatible use a non-IEEE floating point
format called SMAP II BCD for floating point values.
<BR><BR>
These values have a range from 1e-999 to 9.999999999999999e999 in magnitude,
with a precision of exactly 16 significant digits.
Principally, the exponent range may be as high as 16383,
but most math routines do not accept exponents greater than 999.</P>
<HR>
<H2><A NAME="for"><U>for</U></A></H2>
<P><B>For loop.</B></P>
<P>For-loop is yet another kind of loop. It uses <CODE>for</CODE> keyword, with the following
syntax:</P>
<PRE>for ([<I>expr1</I>]; [<I>expr2</I>]; [<I>expr3</I>]) <I>statement</I>
</PRE>
<P><I>statement</I> is executed repeatedly until the value of <I>expr2</I> is 0.
Before the first iteration, <I>expr1</I> is evaluated. This is usually used to
initialize variables for the loop.
After each iteration of the loop, <I>expr3</I> is evaluated. This is usually used
to increment a loop counter. In fact, the for-loop is absolutely equivalent to the
following sequence of statements:</P>
<PRE><I>expr1</I>;
while (<I>expr2</I>)
{
<I>statement</I>;
<I>expr3</I>;
}
</PRE>
<P>That's why <I>expr1</I> and <I>expr3</I> must contain side effects, else they are
useless. For example,</P>
<PRE>for (i=0; i<100; i++) sum += x[i];
for (i=0, t=string; i<40 && *t; i++, t++) putch(*t);
putch('\n');
for (i=0, sum=0, sumsq=0, i<100; i++)
{
sum += i; sumsq += i*i;
}
</PRE>
<P>All the expressions are optional. If <I>expr2</I> is left out, it is assumed to
be 1. <I>statement</I> may be a compound statement as well.</P>
<HR>
<H2><A NAME="goto"><U>goto</U></A></H2>
<P><B>Unconditionally transfer control.</B></P>
<P><CODE>goto</CODE> may be used for transfering control from one place to another.
The syntax is:</P>
<PRE>goto <I>identifier</I>;
</PRE>
<P>Control is unconditionally transferred to the location of a local label
specified by <I>identifier</I>. For example,</P>
<PRE>Again:
...
goto Again;
</PRE>
<P>Jumping out of scope (for example out of the body of the <A HREF="#for">for</A>
loop) is legal, but jumping into a scope (for example from one function to another)
is <B>not</B> allowed.
<BR><BR>
<B>Note:</B> The GNU C extends the usage of <CODE>goto</CODE> keyword to allow
<A HREF="gnuexts.html#SEC65">computed goto</A>. Also, it supports
<A HREF="gnuexts.html#SEC64">local labels</A>, useful in macro definitions.</P>
<HR>
<H2><A NAME="if"><U>if, else</U></A></H2>
<P><B>Conditional statement.</B></P>
<P>Keyword <CODE>if</CODE> is used for conditional execution. The basic form of <CODE>if</CODE>
uses the following syntax:</P>
<PRE>if (<I>expression</I>)
<I>statement1</I>
</PRE>
<P>Alternatively, <CODE>if</CODE> may be used together with <CODE>else</CODE>, using the
following syntax:</P>
<PRE>if (<I>expression</I>)
<I>statement1</I>
else
<I>statement2</I>
</PRE>
<P>If <I>expression</I> is nonzero when evaluated, then <I>statement1</I> is executed. In
the second case, <I>statement2</I> is executed if the expression is 0.
<BR><BR>
An optional <CODE>else</CODE> can follow an <CODE>if</CODE> statement, but no statements can come
between an <CODE>if</CODE> statement and an <CODE>else</CODE>. Of course, both
<I>statement1</I> and <I>statement2</I> may be compound statements (i.e. a sequence of
statements enclosed in braces). Here will be given some legal examples:</P>
<PRE>if (count < 50) count++;
if (x < y) z = x;
else z = y;
if (x < y)
{
printf ("x is smaller");
return x;
}
else
{
printf ("x is greater")
return y;
}
</PRE>
<P>The <A HREF="cpp.html#SEC34">#if</A> and
<A HREF="cpp.html#SEC35">#else</A> preprocessor statements look similar to the
<CODE>if</CODE> and <CODE>else</CODE> statements, but have very different effects.
They control which source file lines are compiled and which are ignored.</P>
<HR>
<H2><A NAME="int"><U>int, char</U></A></H2>
<P><B>Basic data types (integer and character).</B></P>
<P>Variables of type int are one machine-type word in length. They can be <A HREF="#short">signed</A> (default)
or <A HREF="#short">unsigned</A>, which means that in this configuration of the compiler
they have by default a range of -32768 to 32767 and 0 to 65535 respectively, but this default
may be changed if the compiler option <B>'-mnoshort'</B> is given. In this case,
the range of type int is -2147483648 to 2147483647 for signed case, or 0 to 4294967295 for
unsigned case. See also <A HREF="#short">short</A> and <A HREF="#short">long</A> type modifiers.
<BR><BR>
Variables of type char are 1 byte in length. They can be signed (this is the default,
unless you use the compiler option <B>'-funsigned-char'</B>) or
unsigned, which means they have a range of -128 to 127 and 0 to 255,
respectively.
<BR><BR>
All data types may be used for defining variables, specifying return types of functions, and
specifying types of function arguments. For example,</P>
<PRE>int a, b, c; // <I>'a', 'b', 'c' are integer variables</I>
int func (); // <I>'func' is a function returning int</I>
char crypt (int key, char value); // <I>'crypt' is a function returning char with</I>
// <I>two args: 'key' is int and 'value' is char</I>
</PRE>
<P>When function return type is omitted, <CODE>int</CODE> is assumed.
<BR><BR>
All data type keywords may be used in combination with <A HREF="opers.html#asterisk">asterisks</A>, <A HREF="opers.html#subscr">brackets</A>
and <A HREF="opers.html#parentheses">parentheses</A>, for making complex data types, like
pointer types, array types, function types, or combinations of them, which in the C language may
have an arbitrary level of complexity (see <A HREF="opers.html#asterisk">asterisk</A> for
more info).</P>
<HR>
<H2><A NAME="register"><U>register</U></A></H2>
<P><B>Tells the compiler to store the variable being declared in a CPU register.</B></P>
<P>In standard C dialects, keyword <CODE>auto</CODE> uses the following syntax:</P>
<PRE>register <I>data-definition</I>;
</PRE>
<P>The <CODE>register</CODE> type modifier tells the compiler to store the variable being
declared in a CPU register (if possible), to optimize access. For example,</P>
<PRE>register int i;
</PRE>
<P>Note that GCC4TI will automatically store often used variables in CPU registers when the
optimization is turned on, but the keyword <CODE>register</CODE> will force storing in
registers even if the optimization is turned off. However, the request for storing data
in registers may be denied, if the compiler concludes that there is not enough free
registers for use at this place.
<BR><BR>
<B>Note:</B> The GNU C extends the usage of <CODE>register</CODE> keyword to allow
<A HREF="gnuexts.html#SEC97">explicitely choosing of used registers</A>.</P>
<HR>
<H2><A NAME="return"><U>return</U></A></H2>
<P><B>Exits the function.</B></P>
<P><CODE>return</CODE> exits immediately from the currently executing function to the calling
routine, optionally returning a value. The syntax is:</P>
<PRE>return [<I>expression</I>];
</PRE>
<P>For example,</P>
<PRE>int sqr (int x)
{
return (x*x);
}
</PRE>
<HR>
<H2><A NAME="short"><U>short, long, signed, unsigned</U></A></H2>
<P><B>Type modifiers.</B></P>
<P>A type modifier alters the meaning of the base type to yield a new type.
Each of these type modifiers can be applied to the base type <A HREF="#int">int</A>.
The modifiers <CODE>signed</CODE> and <CODE>unsigned</CODE> can be applied to the base type <A HREF="#int">char</A>.
In addition, <CODE>long</CODE> can be applied to <A HREF="#float">double</A>.
<BR><BR>
When the base type is omitted from a declaration, <CODE>int</CODE> is assumed.
For example,</P>
<PRE>long x; // <I>'int' is implied</I>
unsigned char ch;
signed int i; // <I>'signed' is default</I>
unsigned long int l; // <I>'int' is accepted, but not needed</I>
</PRE>
<P>In this implementation of the compiler, the valid range of valid data types is as
listed in the following table:</P>
<PRE>short int -32768 to 32767
long int -2147483648 to 2147483647
signed char -128 to 127
signed int -32768 to 32767 (signed is default)
[or -2147483648 to 2147483647 if '-mnoshort' is given]
signed short int -32768 to 32767
signed long int -2147483648 to 2147483647
unsigned char 0 to 255
unsigned int 0 to 65535
[or 0 to 4294967295 if '-mnoshort' is given]
unsigned short int 0 to 65535
unsigned long int 0 to 4294967295
</PRE>
<P>
<B>Note:</B> GNU C extends the <CODE>long</CODE> keyword to allow
<A HREF="gnuexts.html#SEC72">double-long integers</A> (64-bit integers in this implementation),
so they have range from -9223372036854775808 to 9223372036854775807 if signed, or from 0 to
18446744073709551615 if unsigned.</P>
<HR>
<H2><A NAME="sizeof"><U>sizeof</U></A></H2>
<P><B>Returns the size of the expression or type.</B></P>
<P>Keyword <CODE>sizeof</CODE> is, in fact, an <A HREF="opers.html">operator</A>. It returns the
size, in bytes, of the given expression or type (as type <A HREF="stddef.html#size_t">size_t</A>).
Its argument may be an expression of a type name:</P>
<PRE>sizeof <I>expression</I>
sizeof (<I>type</I>)
</PRE>
<P>For example,</P>
<PRE>workspace = calloc (100, sizeof (int));
memset(buff, 0, sizeof buff);
nitems = sizeof (table) / sizeof (table[0]);
</PRE>
<P>Note that <I>type</I> may be an anonymous type (see <A HREF="opers.html#asterisk">asterisk</A>
for more info about anonymous types).</P>
<HR>
<H2><A NAME="static"><U>static</U></A></H2>
<P><B>Preserves variable value to survive after its scope ends.</B></P>
<P>Keyword <CODE>static</CODE> may be applied to both data and function definitions:</P>
<PRE>static <I>data-definition</I>;
static <I>function-definition</I>;
</PRE>
<P>For example,</P>
<PRE>static int i = 10;
static void PrintCR (void) { putc ('\n'); }
</PRE>
<P><CODE>static</CODE> tells that a function or data element is only known within the scope of the current
compile. In addition, if you use the <CODE>static</CODE> keyword with a variable that is
local to a function, it allows the last value of the variable to be preserved between
successive calls to that function.
<BR><BR>
Note that the initialization of automatic and static variables is quite different. Automatic
variables (local variables are automatic by default, except you explicitely use <CODE>static</CODE>
keyword) are initialized during the run-time, so the initialization will be executed whenever
it is encountered in the program. Static (and global) variables are initialized during
the compile-time, so the initial values will simply be embeded in the executable
file itself. If you change them, they will retain changed in the file. By default, the C language
proposes that all uninitialized static variables are initialized to zero.
<BR><BR>
The fact that global and static variables are initialized in compile-time and kept in the
executable file itself has one serious consequence, which is not present on "standard" computers like PC, Mac, etc. Namely,
these computers always reload the executable on each start from an external memory device (disk),
but this is not the case on TI. So, if you have the following global (or static) variable</P>
<PRE>int a = 10;
</PRE>
<P>and if you change its value somewhere in the program to 20 (for example), its initial
value will be 20 (not 10) on the next program start! Note that this is true only for global
and static variables. To force reinitializing, you must put explicitely something
like</P>
<PRE>a = 10;
</PRE>
<P>at the begining of the main program!
<BR><BR>
Note, however, that if the program is archived,
the initial values will be restored each time you run the program, because archived
programs are reloaded from the archive memory to the RAM on each start, similarly
like the programs are reloaded from disks on "standard" computers each time when you start them.</P>
<HR>
<H2><A NAME="struct"><U>struct</U></A></H2>
<P><B>Groups variables into a single record.</B></P>
<P>The syntax for defining records is:</P>
<PRE>struct [<I>struct-type-name</I>]
{
[<I>type</I> <I>variable-names</I>] ;
...
} [<I>structure-variables</I>] ;
</PRE>
<P>A struct, like an <A HREF="#union">union</A>, groups variables into a single record.
The <I>struct-type-name</I> is an optional tag name that refers to the structure
type. The <I>structure-variables</I> are the data definitions, and are also optional.
Though both are optional, one of the two must appear.
<BR><BR>
Elements in the record are defined by naming a <I>type</I>, followed by
<I>variable-names</I> separated by commas. Different variable types can be
separated by a semicolon. For example,</P>
<PRE>struct my_struct
{
char name[80], phone_number[80];
int age, height;
} my_friend;
</PRE>
<P>declares a record variable <I>my_friend</I> containing two strings
(<I>name</I> and <I>phone_number</I>) and two integers (<I>age</I> and <I>height</I>).
To declare additional variables of the same type, you use the keyword <CODE>struct</CODE>
followed by the <I>struct-type-name</I>, followed by the variable names. For
example,</P>
<PRE>struct my_struct my_friends[100];
</PRE>
<P>declares an array named <I>my_friends</I> which components are records.
In fact, <CODE>'struct my_struct'</CODE> becomes a new type which is equal in rights with any
built-in type.
<BR><BR>
To access elements in a structure, you use a record selector (<CODE>'.'</CODE>). For
example,</P>
<PRE>strcpy (my_friend.name, "Mr. Wizard");
</PRE>
<P>A bit field is an element of a structure that is defined in terms of bits.
Using a special type of struct definition, you can declare a structure
element that can range from 1 to 16 bits in length. For example,</P>
<PRE>struct bit_field
{
int bit_1 : 1;
int bits_2_to_5 : 4;
int bit_6 : 1;
int bits_7_to_16 : 10;
} bit_var;
</PRE>
<HR>
<H2><A NAME="switch"><U>switch, case, default</U></A></H2>
<P><B>Branches control.</B></P>
<P><CODE>switch</CODE> causes control to branch to one of a list of possible statements in the
block of statements. The syntax is</P>
<PRE>switch (<I>expression</I>) <I>statement</I>
</PRE>
<P>The statement <I>statement</I> is typically a compound statement (i.e. a block of statements
enclosed in braces). The branched-to statement is determined by evaluating <I>expression</I>,
which must return an integral type. The list of possible branch points within
<I>statement</I> is determined by preceding substatements with</P>
<PRE>case <I>constant-expression</I> :
</PRE>
<P>where <I>constant-expression</I> must be an int and must be unique.
<BR><BR>
Once a value is computed for <I>expression</I>, the list of possible
<I>constant-expression</I> values determined from all case statements is searched
for a match. If a match is found, execution continues after the matching case statement
and continues until a break statement is encountered or the end of
<I>statement</I> is reached. If a match is not found and this statement prefix is found
within <I>statement</I>,</P>
<PRE>default :
</PRE>
<P>execution continues at this point. Otherwise, <I>statement</I> is skipped
entirely. For example,</P>
<PRE>switch (operand)
{
case MULTIPLY:
x *= y; break;
case DIVIDE:
x /= y; break;
case ADD:
x += y; break;
case SUBTRACT:
x -= y; break;
case INCREMENT2:
x++;
case INCREMENT1:
x++; break;
case EXPONENT:
case ROOT:
case MOD:
printf ("Not implemented!\n");
break;
default:
printf("Bug!\n");
exit(1);
}
</PRE>
<P>See also <A HREF="#break">break</A>.
<BR><BR>
<B>Note:</B> GNU C extends the <CODE>case</CODE> keyword to allow
<A HREF="gnuexts.html#SEC83">case ranges</A>.</P>
<HR>
<H2><A NAME="typedef"><U>typedef</U></A></H2>
<P><B>Creates a new type.</B></P>
<P>The syntax for defining a new type is</P>
<PRE>typedef <I>type-definition</I> <I>identifier</I>;</PRE>
<P>This statement assigns the symbol name <I>identifier</I> to the data type definition
<I>type-definition</I>. For example,</P>
<PRE>typedef unsigned char byte;
typedef char str40[41];
typedef struct {float re, im;} complex;
typedef char *byteptr;
typedef int (*fncptr)(int);
</PRE>
<P>After these definition, you can declare</P>
<PRE>byte m, n;
str40 myStr;
complex z1, z2;
byteptr p;
fncptr myFunc;
</PRE>
<P>with the same meaning as you declare</P>
<PRE>unsigned char m, n;
char myStr[41];
struct {float re, im;} z1, z2;
char *p;
int (*myFunc)(int);
</PRE>
<P>User defined types may be used at any place where the built-in types may be used.</P>
<HR>
<H2><A NAME="union"><U>union</U></A></H2>
<P><B>Groups variables which share the same storage space.</B></P>
<P>A union is similar to a <A HREF="#struct">struct</A>, except it allows you to define variables
that share storage space. The syntax for defining unions is:</P>
<PRE>union [<I>union-type-name</I>]
{
<I>type</I> <I>variable-names</I>;
...
} [<I>union-variables</I>] ;
</PRE>
<P>For example,</P>
<PRE>union short_or_long
{
short i;
long l;
} a_number;
</PRE>
<P>The compiler will allocate enough storage in a number to accommodate the
largest element in the union.
Elements of a union are accessed in the same manner as a struct.
<BR><BR>
Unlike a struct, the variables <CODE>'a_number.i'</CODE> and <CODE>'a_number.l'</CODE> occupy the same
location in memory. Thus, writing into one will overwrite the other.</P>
<HR>
<H2><A NAME="void"><U>void</U></A></H2>
<P><B>Empty data type.</B></P>
<P>When used as a function return type, void means that the function does not
return a value. For example,</P>
<PRE>void hello (char *name)
{
printf("Hello, %s.", name);
}
</PRE>
<P>When found in a function heading, void means the function does not take any
parameters. For example,</P>
<PRE>int init (void)
{
return 1;
}
</PRE>
<P>This is not the same as defining</P>
<PRE>int init ()
{
return 1;
}
</PRE>
<P>because in the second case the compiler will not check whether the function is really called
with no arguments at all; instead, a function call with arbitrary number of arguments
will be accepted without any warnings (this is implemented only for the compatibility
with the old-style function definition syntax).
<BR><BR>
Pointers can also be declared as void. They can't be dereferenced without explicit casting.
This is because the compiler can't determine the size of the object the pointer
points to. For example,</P>
<PRE>int x;
float f;
void *p = &x; // <I>p points to x</I>
*(int*)p = 2;
p = &r; // <I>p points to r</I>
*(float*)p = 1.1;
</PRE>
<HR>
<H2><A NAME="volatile"><U>volatile</U></A></H2>
<P><B>Indicates that a variable can be changed by a background routine.</B></P>
<P>Keyword <CODE>volatile</CODE> is an extreme opposite of <CODE>const</CODE>. It
indicates that a variable may be changed in a way which is absolutely unpredictable by
analysing the normal program flow (for example, a variable which may be changed by
an interrupt handler). This keyword uses the following syntax:</P>
<PRE>volatile <I>data-definition</I>;
</PRE>
<P>Every reference to the variable will reload the contents from memory rather
than take advantage of situations where a copy can be in a register.</P>
<HR>
<H2><A NAME="while"><U>while</U></A></H2>
<P><B>Repeats execution while the condition is true.</B></P>
<P>Keyword <CODE>while</CODE> is the most general loop statemens. It uses the following syntax:</P>
<PRE>while (<I>expression</I>) <I>statement</I>
</PRE>
<P><I>statement</I> is executed repeatedly as long as the value of <I>expression</I>
remains nonzero. The test takes place before each execution of the
<I>statement</I>. For example,</P>
<PRE>while (*p == ' ') p++;
</PRE>
<P>Of course, <I>statement</I> may be a compound statement as well.</P>
<HR>
<H3><A HREF="index.html">Return to the main index</A></H3>
</BODY>
</HTML>