-
Notifications
You must be signed in to change notification settings - Fork 48
/
train.py
336 lines (315 loc) · 16.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import ast
import os
from functools import partial
import mindspore as ms
from mindyolo.data import COCODataset, create_loader
from mindyolo.models import create_loss, create_model
from mindyolo.optim import (EMA, create_group_param, create_lr_scheduler,
create_optimizer, create_warmup_momentum_scheduler)
from mindyolo.utils import logger
from mindyolo.utils.config import parse_args
from mindyolo.utils.train_step_factory import get_gradreducer, get_loss_scaler, create_train_step_fn
from mindyolo.utils.trainer_factory import create_trainer
from mindyolo.utils.callback import create_callback
from mindyolo.utils.utils import (freeze_layers, load_pretrain, set_default,
set_seed, Synchronizer)
def get_parser_train(parents=None):
parser = argparse.ArgumentParser(description="Train", parents=[parents] if parents else [])
parser.add_argument("--task", type=str, default="detect", choices=["detect", "segment"])
parser.add_argument("--device_target", type=str, default="Ascend", help="device target, Ascend/GPU/CPU")
parser.add_argument("--save_dir", type=str, default="./runs", help="save dir")
parser.add_argument("--log_level", type=str, default="INFO", help="log level to print")
parser.add_argument("--is_parallel", type=ast.literal_eval, default=False, help="Distribute train or not")
parser.add_argument("--ms_mode", type=int, default=0,
help="Running in GRAPH_MODE(0) or PYNATIVE_MODE(1) (default=0)")
parser.add_argument("--max_call_depth", type=int, default=2000, help="The maximum depth of a function call")
parser.add_argument("--ms_amp_level", type=str, default="O0", help="amp level, O0/O1/O2/O3")
parser.add_argument("--keep_loss_fp32", type=ast.literal_eval, default=True,
help="Whether to maintain loss using fp32/O0-level calculation")
parser.add_argument("--anchor_base", type=ast.literal_eval, default=True, help="Anchor-base")
parser.add_argument("--ms_loss_scaler", type=str, default="static", help="train loss scaler, static/dynamic/none")
parser.add_argument("--ms_loss_scaler_value", type=float, default=1024.0, help="static loss scale value")
parser.add_argument("--ms_jit", type=ast.literal_eval, default=True, help="use jit or not")
parser.add_argument("--ms_enable_graph_kernel", type=ast.literal_eval, default=False,
help="use enable_graph_kernel or not")
parser.add_argument("--ms_datasink", type=ast.literal_eval, default=False, help="Train with datasink.")
parser.add_argument("--overflow_still_update", type=ast.literal_eval, default=True, help="overflow still update")
parser.add_argument("--clip_grad", type=ast.literal_eval, default=False)
parser.add_argument("--clip_grad_value", type=float, default=10.0)
parser.add_argument("--ema", type=ast.literal_eval, default=True, help="ema")
parser.add_argument("--weight", type=str, default="", help="initial weight path")
parser.add_argument("--ema_weight", type=str, default="", help="initial ema weight path")
parser.add_argument("--freeze", type=list, default=[], help="Freeze layers: backbone of yolov7=50, first3=0 1 2")
parser.add_argument("--epochs", type=int, default=300, help="total train epochs")
parser.add_argument("--per_batch_size", type=int, default=32, help="per batch size for each device")
parser.add_argument("--img_size", type=list, default=640, help="train image sizes")
parser.add_argument("--nbs", type=list, default=64, help="nbs")
parser.add_argument("--accumulate", type=int, default=1,
help="grad accumulate step, recommended when batch-size is less than 64")
parser.add_argument("--auto_accumulate", type=ast.literal_eval, default=False, help="auto accumulate")
parser.add_argument("--log_interval", type=int, default=100, help="log interval")
parser.add_argument("--single_cls", type=ast.literal_eval, default=False,
help="train multi-class data as single-class")
parser.add_argument("--sync_bn", type=ast.literal_eval, default=False,
help="use SyncBatchNorm, only available in DDP mode")
parser.add_argument("--keep_checkpoint_max", type=int, default=100)
parser.add_argument("--run_eval", type=ast.literal_eval, default=False, help="Whether to run eval during training")
parser.add_argument("--conf_thres", type=float, default=0.001, help="object confidence threshold for run_eval")
parser.add_argument("--iou_thres", type=float, default=0.65, help="IOU threshold for NMS for run_eval")
parser.add_argument("--conf_free", type=ast.literal_eval, default=False,
help="Whether the prediction result include conf")
parser.add_argument("--rect", type=ast.literal_eval, default=False, help="rectangular training")
parser.add_argument("--nms_time_limit", type=float, default=20.0, help="time limit for NMS")
parser.add_argument("--recompute", type=ast.literal_eval, default=False, help="Recompute")
parser.add_argument("--recompute_layers", type=int, default=0)
parser.add_argument("--seed", type=int, default=2, help="set global seed")
parser.add_argument("--summary", type=ast.literal_eval, default=True, help="collect train loss scaler or not")
parser.add_argument("--profiler", type=ast.literal_eval, default=False, help="collect profiling data or not")
parser.add_argument("--profiler_step_num", type=int, default=1, help="collect profiler data for how many steps.")
parser.add_argument("--opencv_threads_num", type=int, default=2, help="set the number of threads for opencv")
parser.add_argument("--strict_load", type=ast.literal_eval, default=True, help="strictly load the pretrain model")
# args for ModelArts
parser.add_argument("--enable_modelarts", type=ast.literal_eval, default=False, help="enable modelarts")
parser.add_argument("--data_url", type=str, default="", help="ModelArts: obs path to dataset folder")
parser.add_argument("--ckpt_url", type=str, default="", help="ModelArts: obs path to pretrain model checkpoint file")
parser.add_argument("--multi_data_url", type=str, default="", help="ModelArts: list of obs paths to multi-dataset folders")
parser.add_argument("--pretrain_url", type=str, default="", help="ModelArts: list of obs paths to multi-pretrain model files")
parser.add_argument("--train_url", type=str, default="", help="ModelArts: obs path to output folder")
parser.add_argument("--data_dir", type=str, default="/cache/data/",
help="ModelArts: local device path to dataset folder")
parser.add_argument("--ckpt_dir", type=str, default="/cache/pretrain_ckpt/",
help="ModelArts: local device path to checkpoint folder")
return parser
def train(args):
# Set Default
set_seed(args.seed)
set_default(args)
main_device = args.rank % args.rank_size == 0
logger.info(f"parse_args:\n{args}")
logger.info("Please check the above information for the configurations")
# Create Network
args.network.recompute = args.recompute
args.network.recompute_layers = args.recompute_layers
network = create_model(
model_name=args.network.model_name,
model_cfg=args.network,
num_classes=args.data.nc,
sync_bn=args.sync_bn,
)
if args.ema:
ema_network = create_model(
model_name=args.network.model_name,
model_cfg=args.network,
num_classes=args.data.nc,
)
ema = EMA(network, ema_network)
else:
ema = None
load_pretrain(network, args.weight, ema, args.ema_weight, args.strict_load) # load pretrain
freeze_layers(network, args.freeze) # freeze Layers
ms.amp.auto_mixed_precision(network, amp_level=args.ms_amp_level)
if ema:
ms.amp.auto_mixed_precision(ema.ema, amp_level=args.ms_amp_level)
# Create Dataloaders
transforms = args.data.train_transforms
stage_dataloaders = []
stage_epochs = [args.epochs,] if not isinstance(transforms, dict) else transforms['stage_epochs']
stage_transforms = [transforms,] if not isinstance(transforms, dict) else transforms['trans_list']
assert len(stage_epochs) == len(stage_transforms), "The length of transforms and stage_epochs is not equal."
assert sum(stage_epochs) == args.epochs, f"Stage epochs [{sum(stage_epochs)}] not equal args.epochs [{args.epochs}]"
for stage in range(len(stage_epochs)):
_dataset = COCODataset(
dataset_path=args.data.train_set,
img_size=args.img_size,
transforms_dict=stage_transforms[stage],
is_training=True,
augment=True,
rect=args.rect,
single_cls=args.single_cls,
batch_size=args.total_batch_size,
stride=max(args.network.stride),
return_segments=(args.task == "segment")
)
_dataloader = create_loader(
dataset=_dataset,
batch_collate_fn=_dataset.train_collate_fn,
column_names_getitem=_dataset.column_names_getitem,
column_names_collate=_dataset.column_names_collate,
batch_size=args.per_batch_size,
epoch_size=stage_epochs[stage],
rank=args.rank,
rank_size=args.rank_size,
shuffle=True,
drop_remainder=True,
num_parallel_workers=args.data.num_parallel_workers,
python_multiprocessing=True,
)
stage_dataloaders.append(_dataloader)
dataloader = stage_dataloaders[0] if len(stage_dataloaders) == 1 else ms.dataset.ConcatDataset(stage_dataloaders)
steps_per_epoch = dataloader.get_dataset_size() // args.epochs
if args.run_eval:
from test import test
eval_dataset = COCODataset(
dataset_path=args.data.val_set,
img_size=args.img_size,
transforms_dict=args.data.test_transforms,
is_training=False,
augment=False,
rect=args.rect,
single_cls=args.single_cls,
batch_size=args.per_batch_size,
stride=max(args.network.stride),
)
eval_dataloader = create_loader(
dataset=eval_dataset,
batch_collate_fn=eval_dataset.test_collate_fn,
column_names_getitem=eval_dataset.column_names_getitem,
column_names_collate=eval_dataset.column_names_collate,
batch_size=args.per_batch_size,
epoch_size=1,
rank=args.rank,
rank_size=args.rank_size,
shuffle=False,
drop_remainder=False,
num_parallel_workers=1,
python_multiprocessing=True,
)
else:
eval_dataset, eval_dataloader = None, None
# Scale loss hyps
nl = network.model.model[-1].nl
if hasattr(args.loss, "box"):
args.loss.box *= 3 / nl # scale to layers
if hasattr(args.loss, "cls"):
args.loss.cls *= args.data.nc / 80 * 3 / nl # scale to classes and layers
if args.anchor_base and hasattr(args.loss, "obj"):
args.loss.obj *= (args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
# Create Loss
loss_fn = create_loss(
**args.loss, anchors=args.network.get("anchors", 1), stride=args.network.stride, nc=args.data.nc
)
ms.amp.auto_mixed_precision(loss_fn, amp_level="O0" if args.keep_loss_fp32 else args.ms_amp_level)
# Create Optimizer
args.optimizer.steps_per_epoch = steps_per_epoch
lr = create_lr_scheduler(**args.optimizer)
params = create_group_param(params=network.trainable_params(), **args.optimizer)
optimizer = create_optimizer(params=params, lr=lr, **args.optimizer)
warmup_momentum = create_warmup_momentum_scheduler(**args.optimizer)
# Create train_step_fn
reducer = get_gradreducer(args.is_parallel, optimizer.parameters)
scaler = get_loss_scaler(args.ms_loss_scaler, scale_value=args.ms_loss_scaler_value)
train_step_fn = create_train_step_fn(
task=args.task,
network=network,
loss_fn=loss_fn,
optimizer=optimizer,
loss_ratio=args.rank_size,
scaler=scaler,
reducer=reducer,
ema=ema,
overflow_still_update=args.overflow_still_update,
ms_jit=args.ms_jit,
clip_grad=args.clip_grad,
clip_grad_value=args.clip_grad_value
)
# Create callbacks
if args.summary:
args.callback.append({"name": "SummaryCallback"})
if args.profiler:
args.callback.append({"name": "ProfilerCallback", "profiler_step_num": args.profiler_step_num})
callback_fns = create_callback(args.callback)
# Create test function for run eval while train
if args.run_eval:
# referred from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/val.py#L74
is_coco_dataset = (
isinstance(args.data.val_set, str)
and "coco" in args.data.val_set
and (args.data.val_set.endswith(f"{os.sep}val2017.txt") or args.data.val_set.endswith(f"{os.sep}test-dev2017.txt"))
) # is COCO
test_fn = partial(
test,
task=args.task,
dataloader=eval_dataloader,
anno_json_path=os.path.join(
args.data.val_set[: -len(args.data.val_set.split("/")[-1])], "annotations/instances_val2017.json"
),
conf_thres=args.conf_thres,
iou_thres=args.iou_thres,
conf_free=args.conf_free,
num_class=args.data.nc,
nms_time_limit=args.nms_time_limit,
is_coco_dataset=is_coco_dataset,
imgIds=None if not is_coco_dataset else eval_dataset.imgIds,
per_batch_size=args.per_batch_size,
rank=args.rank,
rank_size=args.rank_size,
save_dir=args.save_dir,
synchronizer=Synchronizer(args.rank_size) if args.rank_size > 1 else None,
)
else:
test_fn = None
# Create Trainer
network.set_train(True)
optimizer.set_train(True)
model_name = os.path.basename(args.config)[:-5] # delete ".yaml"
trainer = create_trainer(
model_name=model_name,
train_step_fn=train_step_fn,
scaler=scaler,
dataloader=dataloader,
steps_per_epoch=steps_per_epoch,
network=network,
loss_fn=loss_fn,
ema=ema,
optimizer=optimizer,
callback=callback_fns,
reducer=reducer,
data_sink=args.ms_datasink,
profiler=args.profiler
)
if not args.ms_datasink:
trainer.train(
epochs=args.epochs,
main_device=main_device,
warmup_step=max(round(args.optimizer.warmup_epochs * steps_per_epoch), args.optimizer.min_warmup_step),
warmup_momentum=warmup_momentum,
accumulate=args.accumulate,
overflow_still_update=args.overflow_still_update,
keep_checkpoint_max=args.keep_checkpoint_max,
log_interval=args.log_interval,
loss_item_name=[] if not hasattr(loss_fn, "loss_item_name") else loss_fn.loss_item_name,
save_dir=args.save_dir,
enable_modelarts=args.enable_modelarts,
train_url=args.train_url,
run_eval=args.run_eval,
test_fn=test_fn,
rank_size=args.rank_size,
ms_jit=args.ms_jit,
profiler_step_num=args.profiler_step_num
)
else:
logger.warning("DataSink is an experimental interface under development.")
logger.warning("Train with data sink mode.")
assert args.accumulate == 1, "datasink mode not support grad accumulate."
trainer.train_with_datasink(
task=args.task,
epochs=args.epochs,
main_device=main_device,
warmup_epoch=max(args.optimizer.warmup_epochs, args.optimizer.min_warmup_step // steps_per_epoch),
warmup_momentum=warmup_momentum,
keep_checkpoint_max=args.keep_checkpoint_max,
log_interval=args.log_interval,
loss_item_name=[] if not hasattr(loss_fn, "loss_item_name") else loss_fn.loss_item_name,
save_dir=args.save_dir,
enable_modelarts=args.enable_modelarts,
train_url=args.train_url,
run_eval=args.run_eval,
test_fn=test_fn,
profiler_step_num=args.profiler_step_num
)
logger.info("Training completed.")
if __name__ == "__main__":
parser = get_parser_train()
args = parse_args(parser)
train(args)