-
Notifications
You must be signed in to change notification settings - Fork 48
/
test.py
530 lines (481 loc) · 21.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import argparse
import ast
import contextlib
import json
import os
import time
import yaml
import numpy as np
from typing import Union
from pathlib import Path
from multiprocessing.pool import ThreadPool
from pycocotools.coco import COCO
from pycocotools.mask import encode
import mindspore as ms
from mindspore import Tensor, nn, ParallelMode
from mindspore.communication import init, get_rank, get_group_size
from mindyolo.data import COCO80_TO_COCO91_CLASS, COCODataset, create_loader
from mindyolo.models.model_factory import create_model
from mindyolo.utils import logger, get_logger
from mindyolo.utils.config import parse_args
from mindyolo.utils.metrics import non_max_suppression, scale_coords, xyxy2xywh, scale_image, process_mask_upsample
from mindyolo.utils.utils import set_seed, get_broadcast_datetime, Synchronizer
def get_parser_test(parents=None):
parser = argparse.ArgumentParser(description="Test", parents=[parents] if parents else [])
parser.add_argument("--task", type=str, default="detect", choices=["detect", "segment"])
parser.add_argument("--device_target", type=str, default="Ascend", help="device target, Ascend/GPU/CPU")
parser.add_argument("--ms_mode", type=int, default=0, help="train mode, graph/pynative")
parser.add_argument("--ms_amp_level", type=str, default="O0", help="amp level, O0/O1/O2")
parser.add_argument(
"--ms_enable_graph_kernel", type=ast.literal_eval, default=False, help="use enable_graph_kernel or not"
)
parser.add_argument(
"--precision_mode", type=str, default=None, help="set accuracy mode of network model"
)
parser.add_argument("--weight", type=str, default="yolov7_300.ckpt", help="model.ckpt path(s)")
parser.add_argument("--per_batch_size", type=int, default=32, help="size of each image batch")
parser.add_argument("--img_size", type=int, default=640, help="inference size (pixels)")
parser.add_argument(
"--single_cls", type=ast.literal_eval, default=False, help="train multi-class data as single-class"
)
parser.add_argument("--rect", type=ast.literal_eval, default=False, help="rectangular training")
parser.add_argument("--exec_nms", type=ast.literal_eval, default=True, help="whether to execute NMS or not")
parser.add_argument("--nms_time_limit", type=float, default=60.0, help="time limit for NMS")
parser.add_argument("--conf_thres", type=float, default=0.001, help="object confidence threshold")
parser.add_argument("--iou_thres", type=float, default=0.65, help="IOU threshold for NMS")
parser.add_argument(
"--conf_free", type=ast.literal_eval, default=False, help="Whether the prediction result include conf"
)
parser.add_argument("--seed", type=int, default=2, help="set global seed")
parser.add_argument("--log_level", type=str, default="INFO", help="save dir")
parser.add_argument("--save_dir", type=str, default="./runs_test", help="save dir")
# args for ModelArts
parser.add_argument("--enable_modelarts", type=ast.literal_eval, default=False, help="enable modelarts")
parser.add_argument("--data_url", type=str, default="", help="ModelArts: obs path to dataset folder")
parser.add_argument("--ckpt_url", type=str, default="", help="ModelArts: obs path to checkpoint folder")
parser.add_argument("--train_url", type=str, default="", help="ModelArts: obs path to dataset folder")
parser.add_argument(
"--data_dir", type=str, default="/cache/data/", help="ModelArts: local device path to dataset folder"
)
parser.add_argument("--is_parallel", type=ast.literal_eval, default=False, help="Distribute test or not")
parser.add_argument(
"--ckpt_dir",
type=str,
default="/cache/pretrain_ckpt/",
help="ModelArts: local device path to checkpoint folder",
)
return parser
def set_default_test(args):
# Set Context
ms.set_context(mode=args.ms_mode, device_target=args.device_target, max_call_depth=2000)
if args.precision_mode is not None:
ms.set_context(ascend_config={"precision_mode":args.precision_mode})
if args.ms_mode == 0:
ms.set_context(jit_config={"jit_level": "O2"})
if args.device_target == "Ascend":
ms.set_context(device_id=int(os.getenv("DEVICE_ID", 0)))
elif args.device_target == "GPU" and args.ms_enable_graph_kernel:
ms.set_context(enable_graph_kernel=True)
# Set Parallel
if args.is_parallel:
init()
args.rank, args.rank_size, parallel_mode = get_rank(), get_group_size(), ParallelMode.DATA_PARALLEL
ms.set_auto_parallel_context(device_num=args.rank_size, parallel_mode=parallel_mode)
else:
args.rank, args.rank_size = 0, 1
# Set Data
args.data.nc = 1 if args.single_cls else int(args.data.nc) # number of classes
args.data.names = ["item"] if args.single_cls and len(args.names) != 1 else args.data.names # class names
assert len(args.data.names) == args.data.nc, "%g names found for nc=%g dataset in %s" % (
len(args.data.names),
args.data.nc,
args.config,
)
# Directories and Save run settings
time = get_broadcast_datetime(rank_size=args.rank_size)
args.save_dir = os.path.join(
args.save_dir, f'{time[0]:04d}.{time[1]:02d}.{time[2]:02d}-{time[3]:02d}.{time[4]:02d}.{time[5]:02d}')
os.makedirs(args.save_dir, exist_ok=True)
if args.rank % args.rank_size == 0:
with open(os.path.join(args.save_dir, "cfg.yaml"), "w") as f:
yaml.dump(vars(args), f, sort_keys=False)
# Set Logger
logger.setup_logging(logger_name="MindYOLO", log_level="INFO", rank_id=args.rank, device_per_servers=args.rank_size)
logger.setup_logging_file(log_dir=os.path.join(args.save_dir, "logs"))
# Modelarts: Copy data, from the s3 bucket to the computing node; Reset dataset dir.
if args.enable_modelarts:
from mindyolo.utils.modelarts import sync_data
os.makedirs(args.data_dir, exist_ok=True)
sync_data(args.data_url, args.data_dir)
sync_data(args.save_dir, args.train_url)
if args.ckpt_url:
sync_data(args.ckpt_url, args.ckpt_dir) # pretrain ckpt
# args.data.dataset_dir = os.path.join(args.data_dir, args.data.dataset_dir)
args.data.val_set = os.path.join(args.data_dir, args.data.val_set)
args.data.test_set = os.path.join(args.data_dir, args.data.test_set)
args.weight = args.ckpt_dir if args.ckpt_dir else ""
def test(task, **kwargs):
if task == "detect":
return test_detect(**kwargs)
elif task == "segment":
return test_segment(**kwargs)
def test_detect(
network: nn.Cell,
dataloader: ms.dataset.Dataset,
anno_json_path: str,
conf_thres: float = 0.001,
iou_thres: float = 0.65,
conf_free: bool = False,
num_class: int = 80,
exec_nms: bool = True,
nms_time_limit: float = -1.0,
is_coco_dataset: bool = True,
imgIds: list = [],
per_batch_size: int = -1,
rank: int = 0,
rank_size: int = 1,
save_dir: str = '',
synchronizer: Synchronizer = None,
cur_epoch: Union[str, int] = 0, # to distinguish saving directory from different epoch in eval while run mode
):
try:
from mindyolo.csrc import COCOeval_fast as COCOeval
except ImportError:
logger.warning(f'unable to load fast_coco_eval api, use normal one instead')
from pycocotools.cocoeval import COCOeval
steps_per_epoch = dataloader.get_dataset_size()
loader = dataloader.create_dict_iterator(output_numpy=True, num_epochs=1)
coco91class = COCO80_TO_COCO91_CLASS
sample_num = 0
infer_times = 0.0
nms_times = 0.0
result_dicts = []
for i, data in enumerate(loader):
imgs, paths, ori_shape, pad, hw_scale = (
data["images"],
data["img_files"],
data["hw_ori"],
data["pad"],
data["hw_scale"],
)
nb, _, height, width = imgs.shape
imgs = Tensor(imgs, ms.float32)
# Run infer
_t = time.time()
out, _ = network(imgs) # inference and training outputs
if isinstance(out, (list, tuple)): # yolov9
out = out[-1]
infer_times += time.time() - _t
# Run NMS
t = time.time()
out = out.asnumpy()
if exec_nms:
out = non_max_suppression(
out,
conf_thres=conf_thres,
iou_thres=iou_thres,
conf_free=conf_free,
multi_label=True,
time_limit=nms_time_limit,
)
nms_times += time.time() - t
# Statistics pred
for si, pred in enumerate(out):
path = Path(str(paths[si]))
sample_num += 1
if len(pred) == 0:
continue
# Predictions
predn = np.copy(pred)
predn[:, :4] = scale_coords(
imgs[si].shape[1:], predn[:, :4], ori_shape[si], ratio=hw_scale[si], pad=pad[si]
) # native-space pred
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
result_dicts.append(
{
"image_id": image_id,
"category_id": coco91class[int(p[5])] if is_coco_dataset else int(p[5]),
"bbox": [round(x, 3) for x in b],
"score": round(p[4], 5),
}
)
logger.info(f"Sample {steps_per_epoch}/{i + 1}, time cost: {(time.time() - _t) * 1000:.2f} ms.")
# save and load result file for distributed case
if rank_size > 1:
# save result to file
# each epoch has a unique directory in eval while run mode
infer_dir = os.path.join(save_dir, 'infer', str(cur_epoch))
os.makedirs(infer_dir, exist_ok=True)
infer_path = os.path.join(infer_dir, f'det_result_rank{rank}_{rank_size}.json')
with open(infer_path, 'w') as f:
json.dump(result_dicts, f)
# synchronize
assert synchronizer is not None
synchronizer()
# load file to result_dicts
f_names = os.listdir(infer_dir)
f_paths = [os.path.join(infer_dir, f) for f in f_names]
logger.info(f"Loading {len(f_names)} eval file from directory {infer_dir}: {sorted(f_names)}.")
assert len(f_names) == rank_size, f'number of eval file({len(f_names)}) should be equal to rank size({rank_size})'
result_dicts = []
for path in f_paths:
with open(path, 'r') as fp:
result_dicts += json.load(fp)
# Compute mAP
if not result_dicts:
logger.warning(f'Got 0 bbox after NMS, skip computing map')
map, map50 = 0.0, 0.0
else:
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
with contextlib.redirect_stdout(get_logger()): # redirect stdout to logger
anno = COCO(anno_json_path) # init annotations api
pred = anno.loadRes(result_dicts) # init predictions api
eval = COCOeval(anno, pred, "bbox")
if is_coco_dataset:
eval.params.imgIds = imgIds
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
logger.error(f"pycocotools unable to run: {e}")
raise e
t = tuple(x / sample_num * 1E3 for x in (infer_times, nms_times, infer_times + nms_times)) + \
(height, width, per_batch_size) # tuple
logger.info(f'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g;' % t)
return map, map50
def test_segment(
network: nn.Cell,
dataloader: ms.dataset.Dataset,
anno_json_path: str,
conf_thres: float = 0.001,
iou_thres: float = 0.65,
conf_free: bool = False,
num_class: int = 80,
exec_nms: bool = True,
nms_time_limit: float = -1.0,
is_coco_dataset: bool = True,
imgIds: list = [],
per_batch_size: int = -1,
rank: int = 0,
rank_size: int = 1,
save_dir: str = '',
synchronizer: Synchronizer = None,
cur_epoch: Union[str, int] = 0, # to distinguish saving directory from different epoch in eval while run mode
):
try:
from mindyolo.csrc import COCOeval_fast as COCOeval
except ImportError:
logger.warning(f'unable to load fast_coco_eval api, use normal one instead')
from pycocotools.cocoeval import COCOeval
steps_per_epoch = dataloader.get_dataset_size()
loader = dataloader.create_dict_iterator(output_numpy=True, num_epochs=1)
coco91class = COCO80_TO_COCO91_CLASS
sample_num = 0
infer_times = 0.0
nms_times = 0.0
result_dicts = []
for i, data in enumerate(loader):
imgs, paths, ori_shape, pad, hw_scale = (
data["images"],
data["img_files"],
data["hw_ori"],
data["pad"],
data["hw_scale"],
)
nb, _, height, width = imgs.shape
imgs = Tensor(imgs, ms.float32)
# Run infer
_t = time.time()
out, (_, _, prototypes) = network(imgs) # inference and training outputs
infer_times += time.time() - _t
# Run NMS
t = time.time()
_c = num_class + 4 if conf_free else num_class + 5
out = out.asnumpy()
bboxes, mask_coefficient = out[:, :, :_c], out[:, :, _c:]
out = non_max_suppression(
bboxes,
mask_coefficient,
conf_thres=conf_thres,
iou_thres=iou_thres,
conf_free=conf_free,
multi_label=True,
time_limit=nms_time_limit,
)
nms_times += time.time() - t
p = prototypes.asnumpy()
# Statistics pred
for si, (pred, proto) in enumerate(zip(out, p)):
path = Path(str(paths[si]))
sample_num += 1
if len(pred) == 0:
continue
# Predictions
pred_masks = process_mask_upsample(proto, pred[:, 6:], pred[:, :4], shape=imgs[si].shape[1:])
pred_masks = pred_masks.astype('float32')
pred_masks = scale_image(pred_masks.transpose(1, 2, 0), ori_shape[si], pad=pad[si])
predn = np.copy(pred)
scale_coords(
imgs[si].shape[1:], predn[:, :4], ori_shape[si], ratio=hw_scale[si], pad=pad[si]
) # native-space pred
def single_encode(x):
"""Encode predicted masks as RLE and append results to jdict."""
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
rle['counts'] = rle['counts'].decode('utf-8')
return rle
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
pred_masks = np.transpose(pred_masks, (2, 0, 1))
rles = []
for _i in range(pred_masks.shape[0]):
rles.append(single_encode(pred_masks[_i]))
for j, (p, b) in enumerate(zip(pred.tolist(), box.tolist())):
result_dicts.append(
{
"image_id": image_id,
"category_id": coco91class[int(p[5])] if is_coco_dataset else int(p[5]),
"bbox": [round(x, 3) for x in b],
"score": round(p[4], 5),
"segmentation": rles[j]
}
)
logger.info(f"Sample {steps_per_epoch}/{i + 1}, time cost: {(time.time() - _t) * 1000:.2f} ms.")
# save and load result file for distributed case
if rank_size > 1:
# save result to file
# each epoch has a unique directory in eval while run mode
infer_dir = os.path.join(save_dir, 'infer', str(cur_epoch))
os.makedirs(infer_dir, exist_ok=True)
infer_path = os.path.join(infer_dir, f'det_result_rank{rank}_{rank_size}.json')
with open(infer_path, 'w') as f:
json.dump(result_dicts, f)
# synchronize
assert synchronizer is not None
synchronizer()
# load file to result_dicts
f_names = os.listdir(infer_dir)
f_paths = [os.path.join(infer_dir, f) for f in f_names]
logger.info(f"Loading {len(f_names)} eval file from directory {infer_dir}: {sorted(f_names)}.")
assert len(f_names) == rank_size, f'number of eval file({len(f_names)}) should be equal to rank size({rank_size})'
result_dicts = []
for path in f_paths:
with open(path, 'r') as fp:
result_dicts += json.load(fp)
# Compute mAP
if not result_dicts:
logger.warning(f'Got 0 bbox after NMS, skip computing map')
map_bbox, map50_bbox, map_mask, map50_mask = 0.0, 0.0, 0.0, 0.0
else:
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
print("Object detection:")
with contextlib.redirect_stdout(get_logger()): # redirect stdout to logger
anno = COCO(anno_json_path) # init annotations api
pred = anno.loadRes(result_dicts) # init predictions api
eval = COCOeval(anno, pred, "bbox")
if is_coco_dataset:
eval.params.imgIds = imgIds
eval.evaluate()
eval.accumulate()
eval.summarize()
map_bbox, map50_bbox = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
print('\n')
print("Instance segmentation:")
with contextlib.redirect_stdout(get_logger()): # redirect stdout to logger
anno = COCO(anno_json_path) # init annotations api
pred = anno.loadRes(result_dicts) # init predictions api
eval = COCOeval(anno, pred, "segm")
if is_coco_dataset:
eval.params.imgIds = imgIds
eval.evaluate()
eval.accumulate()
eval.summarize()
map_mask, map50_mask = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
logger.error(f"pycocotools unable to run: {e}")
raise e
t = tuple(x / sample_num * 1E3 for x in (infer_times, nms_times, infer_times + nms_times)) + \
(height, width, per_batch_size) # tuple
logger.info(f'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g;' % t)
return map_bbox, map50_bbox, map_mask, map50_mask
def main(args):
# Init
s_time = time.time()
set_seed(args.seed)
set_default_test(args)
logger.info(f"parse_args:\n{args}")
# Create Network
network = create_model(
model_name=args.network.model_name,
model_cfg=args.network,
num_classes=args.data.nc,
sync_bn=False,
checkpoint_path=args.weight,
)
network.set_train(False)
ms.amp.auto_mixed_precision(network, amp_level=args.ms_amp_level)
# Create Dataloader
dataset_path = args.data.val_set
# referred from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/val.py#L74
is_coco_dataset = (
isinstance(dataset_path, str)
and "coco" in dataset_path
and (args.data.val_set.endswith(f"{os.sep}val2017.txt") or args.data.val_set.endswith(f"{os.sep}test-dev2017.txt"))
) # is COCO
dataset = COCODataset(
dataset_path=dataset_path,
img_size=args.img_size,
transforms_dict=args.data.test_transforms,
is_training=False,
augment=False,
rect=args.rect,
single_cls=args.single_cls,
batch_size=args.per_batch_size,
stride=max(args.network.stride),
)
dataloader = create_loader(
dataset=dataset,
batch_collate_fn=dataset.test_collate_fn,
column_names_getitem=dataset.column_names_getitem,
column_names_collate=dataset.column_names_collate,
batch_size=args.per_batch_size,
epoch_size=1,
rank=args.rank,
rank_size=args.rank_size,
shuffle=False,
drop_remainder=False,
num_parallel_workers=args.data.num_parallel_workers,
python_multiprocessing=True,
)
# Run test
test(
task=args.task,
network=network,
dataloader=dataloader,
anno_json_path=os.path.join(
args.data.val_set[: -len(args.data.val_set.split("/")[-1])], "annotations/instances_val2017.json"
),
conf_thres=args.conf_thres,
iou_thres=args.iou_thres,
conf_free=args.conf_free,
num_class=args.data.nc,
exec_nms=args.exec_nms,
nms_time_limit=args.nms_time_limit,
is_coco_dataset=is_coco_dataset,
imgIds=None if not is_coco_dataset else dataset.imgIds,
per_batch_size=args.per_batch_size,
rank=args.rank,
rank_size=args.rank_size,
save_dir=args.save_dir,
synchronizer=Synchronizer(args.rank_size) if args.rank_size > 1 else None,
)
e_time = time.time()
logger.info(f"Testing completed, cost {e_time - s_time:.2f}s.")
if __name__ == "__main__":
parser = get_parser_test()
args = parse_args(parser)
main(args)