-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
184 lines (165 loc) · 5.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/python
# -*- encoding: utf-8 -*-
from PIL import Image
import numpy as np
from glob import glob
from torch.autograd import Variable
from models.vmamba_Fusion_efficross import VSSM_Fusion
from TaskFusion_dataset import Fusion_dataset
import argparse
import datetime
import time
import logging
import os.path as osp
import os
from logger import setup_logger
from loss import Fusionloss
import torch
from torch.utils.data import DataLoader
import warnings
warnings.filterwarnings('ignore')
def parse_args():
parse = argparse.ArgumentParser()
return parse.parse_args()
def RGB2YCrCb(input_im):
im_flat = input_im.transpose(1, 3).transpose(
1, 2).reshape(-1, 3) # (nhw,c)
R = im_flat[:, 0]
G = im_flat[:, 1]
B = im_flat[:, 2]
Y = 0.299 * R + 0.587 * G + 0.114 * B
Cr = (R - Y) * 0.713 + 0.5
Cb = (B - Y) * 0.564 + 0.5
Y = torch.unsqueeze(Y, 1)
Cr = torch.unsqueeze(Cr, 1)
Cb = torch.unsqueeze(Cb, 1)
temp = torch.cat((Y, Cr, Cb), dim=1).cuda()
out = (
temp.reshape(
list(input_im.size())[0],
list(input_im.size())[2],
list(input_im.size())[3],
3,
)
.transpose(1, 3)
.transpose(2, 3)
)
return out
def YCrCb2RGB(input_im):
im_flat = input_im.transpose(1, 3).transpose(1, 2).reshape(-1, 3)
mat = torch.tensor(
[[1.0, 1.0, 1.0], [1.403, -0.714, 0.0], [0.0, -0.344, 1.773]]
).cuda()
bias = torch.tensor([0.0 / 255, -0.5, -0.5]).cuda()
temp = (im_flat + bias).mm(mat).cuda()
out = (
temp.reshape(
list(input_im.size())[0],
list(input_im.size())[2],
list(input_im.size())[3],
3,
)
.transpose(1, 3)
.transpose(2, 3)
)
return out
def train_fusion(num=0, logger=None):
lr_start = 0.0002
modelpth = 'model_last'
Method = 'my_cross'
modelpth = os.path.join(modelpth, Method)
fusionmodel = eval('VSSM_Fusion')()
fusionmodel.cuda()
fusionmodel.train()
optimizer = torch.optim.Adam(fusionmodel.parameters(), lr=lr_start)
train_dataset = Fusion_dataset('train',length=30000)
print("the training dataset is length:{}".format(train_dataset.length))
train_loader = DataLoader(
dataset=train_dataset,
batch_size=2,
shuffle=True,
num_workers=8,
pin_memory=True,
drop_last=True,
)
train_loader.n_iter = len(train_loader)
criteria_fusion = Fusionloss()
epoch = 2
st = glob_st = time.time()
logger.info('Training Fusion Model start~')
for epo in range(0, epoch):
# print('\n| epo #%s begin...' % epo)
lr_start = 0.0001
lr_decay = 0.75
lr_this_epo = lr_start * lr_decay ** (epo - 1)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_epo
for it, (image_vis, image_ir) in enumerate(train_loader):
try:
fusionmodel.train()
image_vis = Variable(image_vis).cuda()
# image_vis_ycrcb = image_vis[:,0:1:,:,:]
image_ir = Variable(image_ir).cuda()
fusion_image = fusionmodel(image_vis, image_ir)
except TypeError as e:
print(f"Caught TypeError: {e}")
ones = torch.ones_like(fusion_image)
zeros = torch.zeros_like(fusion_image)
fusion_image = torch.where(fusion_image > ones, ones, fusion_image)
fusion_image = torch.where(fusion_image < zeros, zeros, fusion_image)
optimizer.zero_grad()
# fusion loss
loss_fusion, loss_in, ssim_loss, loss_grad= criteria_fusion(
image_vis=image_vis, image_ir=image_ir, generate_img=
fusion_image, i=num, labels=None
)
loss_total = loss_fusion
loss_total.backward()
optimizer.step()
ed = time.time()
t_intv, glob_t_intv = ed - st, ed - glob_st
now_it = train_loader.n_iter * epo + it + 1
eta = int((train_loader.n_iter * epoch - now_it)
* (glob_t_intv / (now_it)))
eta = str(datetime.timedelta(seconds=eta))
if now_it % 10 == 0:
msg = ', '.join(
[
'step: {it}/{max_it}',
'loss_total: {loss_total:.4f}',
'loss_in: {loss_in:.4f}',
'loss_grad: {loss_grad:.4f}',
'ssim_loss: {loss_ssim:.4f}',
'eta: {eta}',
'time: {time:.4f}',
]
).format(
it=now_it,
max_it=train_loader.n_iter * epoch,
loss_total=loss_total.item(),
loss_in=loss_in.item(),
loss_grad=loss_grad.item(),
loss_ssim=ssim_loss.item(),
time=t_intv,
eta=eta,
)
logger.info(msg)
st = ed
fusion_model_file = os.path.join(modelpth, 'fusion_model.pth')
torch.save(fusionmodel.state_dict(), fusion_model_file)
logger.info("Fusion Model Save to: {}".format(fusion_model_file))
logger.info('\n')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train with pytorch')
parser.add_argument('--model_name', '-M', type=str, default='VSSM_Fusion')
parser.add_argument('--batch_size', '-B', type=int, default=1)
parser.add_argument('--gpu', '-G', type=int, default=0)
parser.add_argument('--num_workers', '-j', type=int, default=1)
args = parser.parse_args()
logpath='./logs'
logger = logging.getLogger()
setup_logger(logpath)
for i in range(1):
train_fusion(i, logger)
print("|{0} Train Fusion Model Sucessfully~!".format(i + 1))
print("training Done!")