-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathTaskFusion_dataset.py
132 lines (116 loc) · 5.48 KB
/
TaskFusion_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import torch
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
import numpy as np
from PIL import Image
import cv2
import glob
from numpy import asarray
def imresize(arr, size, interp='bilinear', mode=None):
numpydata = asarray(arr)
im = Image.fromarray(numpydata, mode=mode)
ts = type(size)
if np.issubdtype(ts, np.signedinteger):
percent = size / 100.0
size = tuple((np.array(im.size) * percent).astype(int))
elif np.issubdtype(type(size), np.floating):
size = tuple((np.array(im.size) * size).astype(int))
else:
size = (size[1], size[0])
func = {'nearest': 0, 'lanczos': 1, 'bilinear': 2, 'bicubic': 3, 'cubic': 3}
imnew = im.resize(size, resample=func[interp])
return np.array(imnew)
def prepare_data_path(dataset_path):
filenames = os.listdir(dataset_path)
data_dir = dataset_path
data = glob.glob(os.path.join(data_dir, "*.bmp"))
data.extend(glob.glob(os.path.join(data_dir, "*.tif")))
data.extend(glob.glob((os.path.join(data_dir, "*.jpg"))))
data.extend(glob.glob((os.path.join(data_dir, "*.png"))))
data.sort()
filenames.sort()
return data, filenames
class Fusion_dataset(Dataset):
def __init__(self, split, ir_path=None, vi_path=None, length=0):
super(Fusion_dataset, self).__init__()
assert split in ['train', 'val', 'test'], 'split must be "train"|"val"|"test"'
self.filepath_ir = []
self.filenames_ir = []
self.filepath_vis = []
self.filenames_vis = []
self.length = length # This place can be set up as much as you want to train
if split == 'train':
data_dir_vis = "/KAIST/" # the path of your data
data_dir_ir = "/KAIST/" # the path of your data
dirs = [d for d in os.listdir(data_dir_ir) if not d.startswith('.')]
dirs.sort()
for dir0 in dirs:
subdirs = [d for d in os.listdir(os.path.join(data_dir_ir, dir0)) if not d.startswith('.')]
for dir1 in subdirs:
req_path = os.path.join(data_dir_ir, dir0, dir1, 'lwir')
for file in os.listdir(req_path):
if file.startswith('.'):
continue
filepath_ir_ = os.path.join(req_path, file)
self.filepath_ir.append(filepath_ir_)
self.filenames_ir.append(file)
filepath_vis_ = filepath_ir_.replace('lwir', 'visible')
self.filepath_vis.append(filepath_vis_)
self.filenames_vis.append(file)
self.split = split
# self.length = len(self.filepath_ir) #if you want to train all data in the dataset
elif split == 'test':
data_dir_vis = vi_path
data_dir_ir = ir_path
self.filepath_vis, self.filenames_vis = prepare_data_path(data_dir_vis)
self.filepath_ir, self.filenames_ir = prepare_data_path(data_dir_ir)
self.split = split
def __getitem__(self, index):
if self.split == 'train':
vis_path = self.filepath_vis[index]
ir_path = self.filepath_ir[index]
image_vis = cv2.imread(vis_path)
image_vis = cv2.cvtColor(image_vis, cv2.COLOR_BGR2GRAY)
# if image_vis is None:
# raise ValueError(f"Failed to load image at {vis_path}")
# image_vis = cv2.cvtColor(image_vis, cv2.COLOR_BGR2GRAY)
image_ir = cv2.imread(ir_path,0)
if image_ir is None:
raise ValueError(f"Failed to load image at {ir_path}")
image_ir, image_vis = self.resize(image_ir, image_vis, [256, 256], [256, 256])
image_vis = np.asarray(Image.fromarray(image_vis), dtype=np.float32) / 255.0
image_vis = np.expand_dims(image_vis, axis=0)
image_ir = np.asarray(Image.fromarray(image_ir), dtype=np.float32) / 255.0
image_ir = np.expand_dims(image_ir, axis=0)
name = self.filenames_vis[index]
return (
torch.tensor(image_vis),
torch.tensor(image_ir),
)
elif self.split == 'test':
vis_path = self.filepath_vis[index]
ir_path = self.filepath_ir[index]
image_vis = cv2.imread(vis_path)
gray_image = cv2.cvtColor(vis_image, cv2.COLOR_BGR2GRAY)
if image_vis is None:
raise ValueError(f"Failed to load image at {vis_path}")
image_ir = cv2.imread(ir_path, 0)
if image_ir is None:
raise ValueError(f"Failed to load image at {ir_path}")
# image_vis = np.asarray(Image.fromarray(image_vis), dtype=np.float32).transpose((2, 0, 1)) / 255.0
image_vis = np.asarray(Image.fromarray(image_vis), dtype=np.float32) / 255.0
image_vis = np.expand_dims(image_vis, axis=0)
image_ir = np.asarray(Image.fromarray(image_ir), dtype=np.float32) / 255.0
image_ir = np.expand_dims(image_ir, axis=0)
name = self.filenames_vis[index]
return (
torch.tensor(image_vis),
torch.tensor(image_ir),
)
def __len__(self):
return self.length
def resize(self, data, data2, crop_size_img, crop_size_label):
data = imresize(data, crop_size_img, interp='bicubic')
data2 = imresize(data2, crop_size_label, interp='bicubic')
return data, data2