-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathenvs.py
117 lines (93 loc) · 3.96 KB
/
envs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import cv2
from baselines.common.vec_env import SubprocVecEnv, DummyVecEnv
from gym import spaces
from a2c_ppo_acktr.envs import TimeLimitMask, TransposeImage, VecPyTorch, VecNormalize, \
VecPyTorchFrameStack
from pathlib import Path
import os
import gym
import numpy as np
import torch
from baselines import bench
from baselines.common.atari_wrappers import make_atari, EpisodicLifeEnv, FireResetEnv, WarpFrame, ScaledFloatFrame, \
ClipRewardEnv, FrameStack
from .wrapper import AtariARIWrapper
def make_env(env_id, seed, rank, log_dir, downsample=True, color=False):
def _thunk():
env = gym.make(env_id)
is_atari = hasattr(gym.envs, 'atari') and isinstance(
env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
if is_atari:
env = make_atari(env_id)
env = AtariARIWrapper(env)
env.seed(seed + rank)
if str(env.__class__.__name__).find('TimeLimit') >= 0:
env = TimeLimitMask(env)
if log_dir is not None:
env = bench.Monitor(
env,
os.path.join(log_dir, str(rank)),
allow_early_resets=False)
if is_atari:
if len(env.observation_space.shape) == 3:
env = wrap_deepmind(env, downsample=downsample, color=color)
elif len(env.observation_space.shape) == 3:
raise NotImplementedError(
"CNN models work only for atari,\n"
"please use a custom wrapper for a custom pixel input env.\n"
"See wrap_deepmind for an example.")
# If the input has shape (W,H,3), wrap for PyTorch convolutions
obs_shape = env.observation_space.shape
if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
env = TransposeImage(env, op=[2, 0, 1])
return env
return _thunk
def make_vec_envs(env_name, seed, num_processes, num_frame_stack=1, downsample=True, color=False, gamma=0.99, log_dir='./tmp/', device=torch.device('cpu')):
Path(log_dir).mkdir(parents=True, exist_ok=True)
envs = [make_env(env_name, seed, i, log_dir, downsample, color)
for i in range(num_processes)]
if len(envs) > 1:
envs = SubprocVecEnv(envs, context='fork')
else:
envs = DummyVecEnv(envs)
if len(envs.observation_space.shape) == 1:
if gamma is None:
envs = VecNormalize(envs, ret=False)
else:
envs = VecNormalize(envs, gamma=gamma)
envs = VecPyTorch(envs, device)
if num_frame_stack > 1:
envs = VecPyTorchFrameStack(envs, num_frame_stack, device)
return envs
class GrayscaleWrapper(gym.ObservationWrapper):
"""Convert observations to grayscale."""
def __init__(self, env):
gym.ObservationWrapper.__init__(self, env)
self.observation_space = spaces.Box(low=0, high=255,
shape=(self.observation_space.shape[0], self.observation_space.shape[1], 1),
dtype=np.uint8)
def observation(self, frame):
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = np.expand_dims(frame, -1)
return frame
def wrap_deepmind(env, downsample=True, episode_life=True, clip_rewards=True, frame_stack=False, scale=False,
color=False):
"""Configure environment for DeepMind-style Atari.
"""
if ("videopinball" in str(env.spec.id).lower()) or ('tennis' in str(env.spec.id).lower()) or ('skiing' in str(env.spec.id).lower()):
env = WarpFrame(env, width=160, height=210, grayscale=False)
if episode_life:
env = EpisodicLifeEnv(env)
if 'FIRE' in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
if downsample:
env = WarpFrame(env, grayscale=False)
if not color:
env = GrayscaleWrapper(env)
if scale:
env = ScaledFloatFrame(env)
if clip_rewards:
env = ClipRewardEnv(env)
if frame_stack:
env = FrameStack(env, 4)
return env