-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
Copy pathrolling.pyx
207 lines (185 loc) · 5.97 KB
/
rolling.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# cython: profile=False
# cython: boundscheck=False, wraparound=False, cdivision=True
cimport cython
cimport numpy as np
import numpy as np
from libc.math cimport sqrt, isnan, NAN
from libcpp.deque cimport deque
cdef class Rolling:
"""1-D array rolling"""
cdef int window
cdef deque[double] barv
cdef int na_count
def __init__(self, int window):
self.window = window
self.na_count = window
cdef int i
for i in range(window):
self.barv.push_back(NAN)
cdef double update(self, double val):
pass
cdef class Mean(Rolling):
"""1-D array rolling mean"""
cdef double vsum
def __init__(self, int window):
super(Mean, self).__init__(window)
self.vsum = 0
cdef double update(self, double val):
self.barv.push_back(val)
if not isnan(self.barv.front()):
self.vsum -= self.barv.front()
else:
self.na_count -= 1
self.barv.pop_front()
if isnan(val):
self.na_count += 1
# return NAN
else:
self.vsum += val
return self.vsum / (self.window - self.na_count)
cdef class Slope(Rolling):
"""1-D array rolling slope"""
cdef double i_sum # can be used as i2_sum
cdef double x_sum
cdef double x2_sum
cdef double y_sum
cdef double xy_sum
def __init__(self, int window):
super(Slope, self).__init__(window)
self.i_sum = 0
self.x_sum = 0
self.x2_sum = 0
self.y_sum = 0
self.xy_sum = 0
cdef double update(self, double val):
self.barv.push_back(val)
self.xy_sum = self.xy_sum - self.y_sum
self.x2_sum = self.x2_sum + self.i_sum - 2*self.x_sum
self.x_sum = self.x_sum - self.i_sum
cdef double _val
_val = self.barv.front()
if not isnan(_val):
self.i_sum -= 1
self.y_sum -= _val
else:
self.na_count -= 1
self.barv.pop_front()
if isnan(val):
self.na_count += 1
# return NAN
else:
self.i_sum += 1
self.x_sum += self.window
self.x2_sum += self.window * self.window
self.y_sum += val
self.xy_sum += self.window * val
cdef int N = self.window - self.na_count
return (N*self.xy_sum - self.x_sum*self.y_sum) / \
(N*self.x2_sum - self.x_sum*self.x_sum)
cdef class Resi(Rolling):
"""1-D array rolling residuals"""
cdef double i_sum # can be used as i2_sum
cdef double x_sum
cdef double x2_sum
cdef double y_sum
cdef double xy_sum
def __init__(self, int window):
super(Resi, self).__init__(window)
self.i_sum = 0
self.x_sum = 0
self.x2_sum = 0
self.y_sum = 0
self.xy_sum = 0
cdef double update(self, double val):
self.barv.push_back(val)
self.xy_sum = self.xy_sum - self.y_sum
self.x2_sum = self.x2_sum + self.i_sum - 2*self.x_sum
self.x_sum = self.x_sum - self.i_sum
cdef double _val
_val = self.barv.front()
if not isnan(_val):
self.i_sum -= 1
self.y_sum -= _val
else:
self.na_count -= 1
self.barv.pop_front()
if isnan(val):
self.na_count += 1
# return NAN
else:
self.i_sum += 1
self.x_sum += self.window
self.x2_sum += self.window * self.window
self.y_sum += val
self.xy_sum += self.window * val
cdef int N = self.window - self.na_count
slope = (N*self.xy_sum - self.x_sum*self.y_sum) / \
(N*self.x2_sum - self.x_sum*self.x_sum)
x_mean = self.x_sum / N
y_mean = self.y_sum / N
interp = y_mean - slope*x_mean
return val - (slope*self.window + interp)
cdef class Rsquare(Rolling):
"""1-D array rolling rsquare"""
cdef double i_sum
cdef double x_sum
cdef double x2_sum
cdef double y_sum
cdef double y2_sum
cdef double xy_sum
def __init__(self, int window):
super(Rsquare, self).__init__(window)
self.i_sum = 0
self.x_sum = 0
self.x2_sum = 0
self.y_sum = 0
self.y2_sum = 0
self.xy_sum = 0
cdef double update(self, double val):
self.barv.push_back(val)
self.xy_sum = self.xy_sum - self.y_sum
self.x2_sum = self.x2_sum + self.i_sum - 2*self.x_sum
self.x_sum = self.x_sum - self.i_sum
cdef double _val
_val = self.barv.front()
if not isnan(_val):
self.i_sum -= 1
self.y_sum -= _val
self.y2_sum -= _val * _val
else:
self.na_count -= 1
self.barv.pop_front()
if isnan(val):
self.na_count += 1
# return NAN
else:
self.i_sum += 1
self.x_sum += self.window
self.x2_sum += self.window * self.window
self.y_sum += val
self.y2_sum += val * val
self.xy_sum += self.window * val
cdef int N = self.window - self.na_count
cdef double rvalue
rvalue = (N*self.xy_sum - self.x_sum*self.y_sum) / \
sqrt((N*self.x2_sum - self.x_sum*self.x_sum) * (N*self.y2_sum - self.y_sum*self.y_sum))
return rvalue * rvalue
cdef np.ndarray[double, ndim=1] rolling(Rolling r, np.ndarray a):
cdef int i
cdef int N = len(a)
cdef np.ndarray[double, ndim=1] ret = np.empty(N)
for i in range(N):
ret[i] = r.update(a[i])
return ret
def rolling_mean(np.ndarray a, int window):
cdef Mean r = Mean(window)
return rolling(r, a)
def rolling_slope(np.ndarray a, int window):
cdef Slope r = Slope(window)
return rolling(r, a)
def rolling_rsquare(np.ndarray a, int window):
cdef Rsquare r = Rsquare(window)
return rolling(r, a)
def rolling_resi(np.ndarray a, int window):
cdef Resi r = Resi(window)
return rolling(r, a)