-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathgradratiologgingoptimizer.py
42 lines (35 loc) · 1.83 KB
/
gradratiologgingoptimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from collections import OrderedDict
import tensorflow as tf
from tensorflow.python.ops import control_flow_ops
class GradRatioLoggingOptimizer:
"""Wraps optimizers that compute the ratio of the update to the parameter values."""
def __init__(self, optimizer, name='training-optimizer'):
self.__optimizer = optimizer
self.__name = name
self.__acc_count = tf.Variable(0, dtype=tf.int32, trainable=False)
self.__grad_ratio_acc_vars = OrderedDict() # type: OrderedDict[str, tf.Variable]
@property
def optimizer(self):
return self.__optimizer
def print_ratios(self, session: tf.Session):
count = self.__acc_count.eval(session) + 1e-10
print('======================')
print('Gradient Ratios')
print('======================')
for name, acc in self.__grad_ratio_acc_vars.items():
print('%s: %.2e' % (name, acc.eval(session) / count))
reset_ops = [tf.assign(self.__acc_count, 0)] + [tf.assign(v, 0) for v in self.__grad_ratio_acc_vars.values()]
session.run(reset_ops)
def minimize(self, loss):
update_ops = [tf.assign_add(self.__acc_count, 1)]
gradients_and_vars = self.__optimizer.compute_gradients(loss)
for grad, var in gradients_and_vars:
if grad is None:
continue
grad_ratio = tf.sqrt(tf.reduce_sum(tf.pow(grad, 2)) / tf.reduce_sum(tf.pow(var, 2)))
ratio_acc_var = tf.Variable(0, trainable=False, dtype=tf.float32)
self.__grad_ratio_acc_vars[var.name] = ratio_acc_var
update_ops.append(tf.assign_add(ratio_acc_var, grad_ratio))
grad_apply_op = self.__optimizer.apply_gradients(gradients_and_vars)
update_ops.append(grad_apply_op)
return control_flow_ops.group(*update_ops)