
ARTIFICIAL INTELLIGENCE PAGE 1

aka.ms/practiceplaybooks

aka.ms/practiceplaybooks

The 8
Principles of
Cloud
Adoption

Microsoft Practice

Development

Playbook

aka.ms/practiceplaybooks

About this Playbook
The goal of this playbook is to help you accelerate or optimize your Azure-focused practice by

teaching you fundamental principles you can apply for greater success in all your Microsoft Azure

projects.

This playbook is the work of Jan Depping and Herman Keijzer. We wrote this to document our own experience helping

Microsoft Partners to be successful with Azure.

When we started this project, we initially drew up a list of 19 principles that seemed to capture the spirit and best practices

that made the Microsoft partners we were working with successful. We eventually merged these to the 8 cloud principles

described in this playbook.

We hope that this information will be beneficial to other Microsoft partners using Azure as part of their offering.

ABOUT THE AUTHORS

Jan Depping works as a Partner Technology Strategist in

the Netherlands. Jan has worked for many years in the

service provider and public sector space. With a

background in computer technology and psychology, he

is always looking the optimal balance between people

and product. His main focus is creating new business

models with AI, Blockchain and Cloud Computing.

Herman Keijzer works as a Partner Development Manager

on datacenter migration programs in western Europe. Before
that he was a Partner Technology Strategist in Netherlands.

Herman has worked for most of his IT life in the service
provider space and has many years of experience in offering
services online. In the early days, these were IP services or
ASP services; these evolved into online services, private cloud
and now into public cloud services. His service provider point
of view means he is always looking at how to run services
both as efficiently as possible and with the highest level of
quality.

Opsgility, a Microsoft Partner, provided additional

technical writing services.

https://www.opsgility.com/

ABOUT THIS PLAYBOOK PAGE 3

aka.ms/practiceplaybooks

Using the playbook effectively

Quickly read through the playbook to familiarize yourself with the layout and content. Go

over the content several times, if needed, then share with your team.

This playbook is organized as 8 principles. Each principle follows the same structure: an explanation, examples and guidance

on how to apply the principle in practice, and further reading.

The examples and guidance are intended to illustrate the principle and provide a practical guide to implementing certain

specific scenarios. They are not an exhaustive list of ways in which the principle can be applied. Once you understand the

principle, you will find many other ways to apply it across your services.

This playbook assumes a reasonable level of knowledge of cloud computing and Microsoft Azure. In particular the reader

should be familiar with Azure infrastructure services and have a basic knowledge of platform services.

TO GET THE MOST VALUE OUT OF THIS PLAYBOOK:

 Get your team together and discuss which pieces of the strategy each person is responsible for.

 Share the playbook with your technical and managed services teams.

 Leverage the resources available from Microsoft to help maximize your profitability.

 Share feedback on how we can improve this and other playbooks by emailing

playbookfeedback@microsoft.com.

mailto:playbookfeedback@microsoft.com

ABOUT THIS PLAYBOOK PAGE 4

aka.ms/practiceplaybooks

Table of Contents
About this Playbook .. 2

Introduction ... 4

Principle 1: Build to Fail ... 6

Principle 2: Self-Service ... 16

Principle 3: Freedom of Choice 20

Principle 4: Trusted .. 24

Principle 5: Continuous Change 30

Principle 6: Software-Defined 34

Principle 7: Pay-per-Use .. 38

Principle 8: Scalable ... 48

Summary .. 50

July 2018

INTRODUCTION PAGE 5

aka.ms/practiceplaybooks

Introduction
This book is about how you can make the cloud work for you. This book will describe some

guiding principles. Making use of these principles will help you to stay on track in your growth

journey. They will enable quicker, better decisions that are aligned with your strategy and

vision.

In our day to day work at Microsoft we work very closely

with what Microsoft calls Managed Service Providers, or

MSPs. We guide these partners in their journey of

adopting Azure as one of their customer offerings, often

transforming their existing hosting business in the

process.

Running Azure workloads requires a different approach

than managing workloads in your own datacenter. If you

try to operate Azure applications using processes

developed for on-premises hardware, you will not use the

cloud to it potential and you will pay far too much for the

cloud resources. You will also fail to take advantage of the

opportunities for increased agility and faster, more

efficient delivery that the cloud enables.

In this book we will guide through what we call the 8

principles of cloud computing. In our experience working

with many Microsoft partners, these principles have been

repeatedly observed to provide the foundations for

successful cloud adoption.

Applying these principles is not a one-time task. They are

a culture and mindset that drives all aspects of your cloud

usage. You practice the principles during development

and during operations. They become part of your agile

DNA when practicing DevOps and CloudOps. Mastering

these principles will become your IP that you can use in

how you add value to your cloud offerings for your

customers or how you consume cloud resources.

Living these principles will bring you many benefits, but

do not treat them as fixed in scope or number. You should

make the principles your own. Expand upon them based

on your own experience. The goal is to develop a cloud

mindset that drives every aspect of how your deliver

services to your customers. We hope these principles will

help to guide you towards that goal, enabling you to use

the cloud to its true potential.

PRINCIPLE 1: BUILD TO FAIL PAGE 6

aka.ms/practiceplaybooks

Principle 1: Build to Fail
The first principle is to embrace the potential failure of any component in a system. By doing

so, you can deliver higher availability for the system as a whole.

In a traditional infrastructure, the principle that is often

used is “built to last”. IT systems are designed to run

continuously and almost indefinitely. The availability of

the system depends largely on the reliability of the

underlying hardware. Hardware availability is achieved by

duplicating many components, such as servers, power,

network, and storage.

This approach does not adapt to cloud computing. In the

cloud, you no longer have directly control over the

hardware, power, or network. You trust your cloud

provider to handle the infrastructure, providing you with a

cloud platform to build and host your application.

“Build to Fail” is a mindset and an approach to building

reliable applications in the cloud. With a “Build to Fail”

mindset, you can recognize the potential for failure in

every component of your application. Rather than trying

to achieve the impossible and eliminate all possible

failures, your approach should be to accept these failures

as inevitable. By designing your application to be resilient

to failure, you can deliver applications with extremely high

levels of availability.

FAILURE IS INEVITABLE

Hardware will fail. Software has bugs. People will make

mistakes. These failures can happen at any of several

layers:

• Utility level: Outage of underlying infrastructure, such
as power, cooling, network or hardware.

• Service level: Outage or degradation of any of the IaaS
or PaaS services used to implement the application.

• Software level: Code bugs or configuration errors
within the application itself.

Software failures can occur either as a result of simple

code bugs, or as a result of more fundamental mistakes in

the design. Distributed systems in particular are complex

and subject to a wide range of degraded behavior. The

fallacies of distributed computing are a set of false

assumptions which developers commonly make when

designing distributed applications. These fallacies are:

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn't change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

Each of these fallacies can lead to a potential failure. For

example, an application that assumes infinite bandwidth

may suffer performance degradation once actual usage

exceeds the inevitably finite bandwidth available.

Failure is not limited to a sudden and complete outage,

such as a power failure. Systems can also suffer degraded

behavior, for example slow performance due to memory

exhaustion or a spike in CPU utilization. These degraded

experiences are also a type of failure.

You can never fully eliminate the possibility of failure

within any component of your application. This is

especially true in the cloud, where responsibility for the

underlying infrastructure and services lies with the cloud

provider, outside your immediate control. For each

possible failure, you therefore need to treat the failure as

an expected and inevitable event and embed resilience

into your application design.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

PRINCIPLE 1: BUILD TO FAIL PAGE 7

aka.ms/practiceplaybooks

THE SEARCH FOR SPOF

A Single Point of Failure (SPOF) refers to any single point

in the application, which if it fails, will cause a failure of the

application itself. As we have seen, failures are inevitable,

therefore each SPOF represents a risk to the application.

Identifying and eliminating SPOFs is an essential step in

implementing high-availability systems.

In traditional IT, eliminating SPOFs is achieved primarily

through hardware redundancy, deploying redundant

servers, power supplies, networks, and so forth. This is

time-consuming, inflexible, and expensive—potentially

very expensive, if separate facilities are required to

prevent against data center-scale outages for business-

critical applications.

In the cloud, you no longer have direct control over the

hardware. Eliminating SPOFs is a shared responsibility

between you and the cloud provider.

• When using Infrastructure-as-a-Service, Azure

provides features such as availability sets and

availability zones which enable your virtual

machines to be distributed, thereby avoiding

shared infrastructure which could act as a SPOF.

You are responsible for understanding the

available redundancy options and implementing

the correct option for your application.

• When using Platform-as-a-Service, Azure

implements redundancy to avoid SPOFs for you.

You must still understand the levels of

redundancy offered and make appropriate

choices—for example, how many instances to

deploy and whether they should be deployed

across multiple availability zones.

You should also review your application architecture to

identify SPOFs. For example, look for redundancy within

the web content, application tier, database, and file store.

Failure Mode Analysis (FMA) is a methodology for

systematically identifying possible failure points and

planning failure mitigations.

A popular approach to test and sharpen the software’s

ability to handle failure is the ‘Chaos Monkey’. This

approach was originally developed by Netflix, and has

since been released as an open-source tool on Github and

adopted by many other service providers. The idea of the

Chaos Monkey is to randomly terminate services or

instances to simulate failures at a much higher frequency

than they naturally occur. This enables engineers to

constantly test that their systems are resilient to failure,

and that their automated responses are effective. For

more information see the Principles of Chaos.

An important note: eliminating SPOFs does not
guarantee your data is secure. For example, data may
be corrupted by a code bug or virus regardless of the
availability of your data platform. You should still back
up your data regularly, and regularly test your processes
for recovery from backup.

MICROSERVICES

A microservices architecture involves decoupling the

application into small interconnected services, each of

which performs a single function or role. These

microservices are independently developed and

deployed, and communicate with each other using

standard protocols and well-defined interfaces.

Microservices are deployed in redundant clusters (with

more than one instance of each service). These clusters are

spread across multiple VMs, decoupling the microservice

deployment from the underlying infrastructure in such a

way as to avoid single points of failure. The failure of any

VM may impact particular microservice instances, but

never an entire cluster for an individual microservice.

Azure supports several platforms for deploying and

managing microservice applications, including Azure

Service Fabric, Azure Kubernetes Service (AKS) and Web

App for Containers. These services use either Service

Fabric or containers as the platform for building

microservices, and automate the process of orchestrating

microservice instances as microservices are added,

removed, updated, and scaled. In doing so, they provide a

robust platform for delivering reliable applications that

avoid SPOFs.

Microservice orchestration is an example of using

software to automatically reduce exposure to SPOFs as

deployments evolve over time. They also automatically

detect and respond to failures, deploying new instances as

required to maintain a redundant footprint for all

microservices.

This automation is a critical component of the “Build to

Fail” principle. Software should be ‘smart’ enough to

recognize when it is not working properly and respond

appropriately. For example, it can shut down a

https://en.wikipedia.org/wiki/Single_point_of_failure
https://docs.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis
https://github.com/Netflix/chaosmonkey
http://principlesofchaos.org/
https://azure.microsoft.com/services/service-fabric/
https://azure.microsoft.com/services/service-fabric/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/app-service/containers/
https://azure.microsoft.com/services/app-service/containers/

PRINCIPLE 1: BUILD TO FAIL PAGE 8

aka.ms/practiceplaybooks

 UNDERSTANDING MICROSERVICES

1. A monolithic application contains domain-specific functionality and is normally divided into functional layers like

web, business, and data.

2. You scale a monolithic application by cloning it on multiple servers/virtual machines/containers.

3. A microservice application separates functionality into separate smaller services.

4. The microservices approach scales out by deploying each service independently, creating instances of these

services across servers/virtual machines/containers.

Source: https://docs.microsoft.com/azure/service-fabric/service-fabric-overview-microservices

PRINCIPLE 1: BUILD TO FAIL PAGE 9

aka.ms/practiceplaybooks

malfunctioning or failed instance and deploy a new, clean

instance to run the workload.

For more information on microservice architectures, see

the microservices overview in the Azure Architecture
Center.

DISASTER RECOVERY

When applying the “Build to Fail” principle for an Azure

application, it is important to understand that the failure

can happen in the application, but it can also happen in

Azure. The Azure Engineering team employ a wide range
of measures to prevent failures, but the possibility of

failure cannot be eliminated entirely, and very

occasionally a service you are using may experience

disruption. Even more rarely, an entire region may be

affected, for example in the event of a natural disaster.

Depending on the availability requirements of your

application, you should plan for this. In addition to

eliminating single points of failure, you should also plan

how to recover from a region failure or other major

outage. Resilience to routine failures is known as high

availability; the ability to recovery from a large-scale

disaster is known as disaster recovery.

Your disaster recovery requirements are typically defined

using two metrics, known as ‘RTO’ and ‘RPO’:

• Recovery Time Objective (RTO) is the time

required after the disaster event for the service to

be available once again. In other words, it’s the

maximum permitted outage duration.

• Recovery Point Objective (RPO) recognizes that

a major disaster may result in data loss, even

where backups are used. It defines the maximum

permitted time window between the most recent

backup and the disaster event. In other words,

data older than the RPO should not be lost, but

more recent data could be.

In many cases, a business will initially declare than only an

RPO of zero (no data loss) is acceptable. In practice, this

requires synchronous replication of data across regions,

which can significantly impact application performance, as

well as cost. In practice, a more nuanced and pragmatic

approach may be required. Azure SQL Database and

Cosmos DB support a variety of options for data

replication, which should be explored.

The ability to achieve a given RPO and RTO will depend

on many factors, such as backup policies, the distance

between sites, the data volumes and data churn rates

involved, the network bandwidth available, and the

throughput of databases and disks.

Azure Backup and Azure Site Recovery are powerful tools

to enable disaster recovery for infrastructure solutions; for

platform services the recovery options associated with

each service must be individually explored.

08:00 09:00 10:00 11:00 12:00 13:00 14:00

Backup

Incident

Recovery

Recovery Point Objective

(RPO)

Recovery Time Objective

(RTO)

https://docs.microsoft.com/azure/architecture/microservices/
https://docs.microsoft.com/azure/architecture/microservices/
https://azure.microsoft.com/blog/advancing-microsoft-azure-reliability/
https://azure.microsoft.com/blog/advancing-microsoft-azure-reliability/
https://azure.microsoft.com/services/backup/
https://azure.microsoft.com/services/site-recovery/

PRINCIPLE 1: BUILD TO FAIL PAGE 10

aka.ms/practiceplaybooks

UNDERSTANDING SLAS

The resilience of your service to failure, and your ability to

respond quickly when failures occur, has a direct impact

on the Service Level Agreement (SLA) your service can

offer.

SLAs are normally measured as the percentage availability

of the service. To be meaningful, this must be measured

over a fixed time interval, such as a week, a month, or a

year. All Azure SLAs are measured monthly. The following

table illustrates how much (or how little!) downtime is

permitted based on the availability SLA.

For more information on Azure and SLAs, see:

• Azure SLA home page

• Azure Virtual Machines SLA

• Design to Survive Failures (Building Real-World
Cloud Apps with Azure)

Availability % Downtime per Year Downtime per Month Downtime per Week

90% ("one nine") 36.5 days 72 hours 16.8 hours

99% ("two nines") 3.65 days 7.2 hours 1.68 hours

99.9% ("three nines") 8.76 hours 43.2 minutes 10.1 minutes

99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes

99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds

https://azure.microsoft.com/support/legal/sla/
https://azure.microsoft.com/support/legal/sla/virtual-machines/
https://docs.microsoft.com/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/design-to-survive-failures
https://docs.microsoft.com/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/design-to-survive-failures

PRINCIPLE 1: BUILD TO FAIL PAGE 11

aka.ms/practiceplaybooks

Using the Principle

In this section, we will briefly review some of the features and services available in Azure to

implement the “Build to Fail” principle. Remember, the goal is to rely on software and

automation rather than requiring manual intervention to respond to failures.

In the following two sections, we’ll first look at the Azure

features to support Built to Fail for Azure Infrastructure

applications. We’ll then discuss Build to Fail for cloud-

native applications.

INFRASTRUCTURE RESILIENCY

Azure Resiliency describes the various options for virtual

machine availability. These range from single VMs

through availability sets and availability zones to

deploying multiple application instances in paired

regions.

Single VM

A 99.9% availability SLA applies to all Azure VMs using

Premium storage, even individual VMs. As single VMs,

they are still subject to SPOFs in the hardware, power

supply, network or other supporting services. This SLA

reflects Microsoft’s confidence in the reliability of the

Azure infrastructure and in the automated fault detection

and recovery mechanisms (see ‘Maintenance’ below).

Availability Sets

Suppose you have two VMs sharing the same workload—

for example, hosting a database. To avoid a SPOF, you

would want these VMs to be deployed independently in

the Azure data center, so they are not sharing the same

physical host, network switch, or power supply. In

addition, you would want an assurance that any updates

to patch the VMs or their hosts will be rolled out

separately, so both VMs are not impacted at the same

time.

This is achieved by placing the VMs into an Availability

Set. Each availability set defines a number of ‘fault

domains’, which are physically separate locations without

shared points of failure. VMs are spread evenly across fault

domains, ensuring that any routine hardware failure

within the datacenter can only impact a subset of the

VMs, allowing the remainder to continue to deliver the

application without interruption.

Availability sets also implement ‘update domains’. These

divide the VMs into separate groups so that platform

updates are rolled out one group at a time. This prevents

platform updates from causing application downtime.

When using availability sets, your VMs should be placed

into the backend pool of an Azure load-balancer or

https://azure.microsoft.com/en-us/features/resiliency/

PRINCIPLE 1: BUILD TO FAIL PAGE 12

aka.ms/practiceplaybooks

Application Gateway. These can be used to distribute the

incoming traffic across the available VMs only.

Availability sets protect your application against routine

failures within a datacenter, such as local power supply

failures, network switch failures, or physical host failures.

This is achieved by eliminating these components as

SPOFs, and results in an availability SLA of 99.95%.

Availability Zones

As we have seen, availability sets protect your application

against SPOFs within a datacenter. However, the

application is still vulnerable to datacenter-wide outages

such as a total power or cooling failure or flood. To

defend against those risks, use availability zones.

Availability zones is a high-availability offering that

protects your applications and data from datacenter-wide

failures. Availability zones are unique physical locations

within an Azure region. Each zone is made up of one or

more datacenters, and is equipped with independent

power, cooling, and networking. To ensure sufficient

redundancy, there’s a minimum of three separate zones in

all enabled regions.

While physically separate, availability zones within a

region are sufficiently close to allow seamless networking

and synchronous writes to storage across zones. Using

availability zones therefore requires only incremental

changes to your application and deployment architecture.

By spreading your VMs across availability zones, you can

protect your application against large-scale failures

impacting an entire datacenter. As well as protecting your

VMs and disks, a wide range of other Azure services also

support availability zones, such as Azure SQL Database,

Service Bus, and VPN Gateway.

Availability zones are now available in 10 largest Azure

regions, with more on the way. Where available, they offer

an industry-best 99.99% VM uptime SLA.

For more information, see Availability Zones Overview.

https://aka.ms/availabilityzones
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://docs.microsoft.com/azure/availability-zones/az-overview

PRINCIPLE 1: BUILD TO FAIL PAGE 13

aka.ms/practiceplaybooks

Paired regions

Availability zones protect your applications against

datacenter-scale outages by distributing your VMs and

other services across multiple datacenters in an Azure

region. They remain vulnerable only to very large-scale

disasters, such as a major storm or earthquake, that would

impact all the datacenters in a single region. To defend

against even this eventuality, the application should be

deployed to an Azure region pair.

Paired regions are selected pairings of Azure regions

within an Azure geographic region (except Brazil South).

They provide physical separation (at least 300 miles where

possible) to protect against natural disasters impacting

both regions. Other measures are also taken to prevent

coordinated outages across regions pairs, such as regional

isolation of services and sequential deployment of

updates. Azure storage supports geo-replication of data

between region pairs, and they are recommended

locations when enabling geo-replication for other data

stores such as Azure SQL Database.

Due to the physical distance between sites, data

replication between regions is typically asynchronous, and

networking is implemented independently. Traffic is

distributed between endpoints at the DNS level, using

Azure Traffic Manager.

In practice there are two ways to implement a paired

region deployment:

• An active-active or active-passive architecture,

where the application is simultaneously deployed

to both regions

• A failover architecture, where the application is

deployed to one region with the capacity to fail

over to the paired region in the event of an

outage, using a service such as Azure Site

Recovery.

This choice is a trade-off between the cost and complexity

of maintaining two parallel deployments and

synchronizing data between them, versus the longer

recovery time for a failover solution in the event of an

outage. The appropriate choice will depend on the

budget and the RTO requirements of the application.

 Single VM Availability Set Availability Zone Paired Region

Scope of failure

protected against
None Server/rack Datacenter Regional disaster

Request routing IP address Load balancer
Zone-redundant

load balancer
Traffic Manager

Networking VNet VNet VNet Global VNet peering

Data synchronization n/a Synchronous Synchronous Asynchronous*

SLA 99.9% 99.95% 99.99% Per region

*CosmosDB supports cross-region synchronous replication as an option

https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions
https://azure.microsoft.com/services/traffic-manager/
https://azure.microsoft.com/services/site-recovery
https://azure.microsoft.com/services/site-recovery

PRINCIPLE 1: BUILD TO FAIL PAGE 14

aka.ms/practiceplaybooks

System Maintenance and VM Reboots

There are several types of planned and unplanned

maintenance events that can impact the availability of

your virtual machines:

• Planned maintenance without a reboot:

Microsoft performs periodic updates to maintain

and improve the reliability, security and

performance of the Azure platform. Most of these

updates are rolled out using VM preserving

maintenance, which simply pauses your VMs in-

place, usually for less than 10 seconds and

sometimes for up to 30 seconds. In some cases,

your VM may be live-migrated to a new host,

which again results in a short pause in VM

operation, typically lasting no more than 5

seconds. Live migration is also used for pre-

emptive maintenance, where Azure predicts a

physical server may be about to fail and pro-

actively migrates VMs to a new host.

• Planned maintenance requiring a reboot:

Occasionally, planned Azure maintenance

requires VMs to be rebooted. You will be given 30

days’ advance notice, during which time you can

choose when to apply the maintenance to your

VMs. After this time the maintenance will be

rolled out and your VMs rebooted. Azure

provides APIs and notifications to help you

manage planned maintenance, both from outside

your application and from within the VMs

themselves.

• Unplanned downtime with service healing:

Where a physical server or other hardware fails

unexpectedly, Azure will automatically detect the

failure and re-provision the VM on a different

server in an unaffected rack within the data

center. The VM will reboot, and data on the temp

disk will be lost. Data on the OS disk and data

disks will be preserved.

For more information on events that can trigger a VM

reboot, see Understand a system reboot for Azure VM.

Summary

The following table gives a comparison of the key features

of each of the resiliency options. For more information,

see Manage virtual machine availability.

CLOUD-NATIVE APPLICATION RESILIENCY

When designing cloud-native applications, you will first

need to understand the resiliency options and features of

each service you consume. You will then need to

understand how these combine to deliver resiliency for

the application as a whole.

There are many proven architectural best practices and

design patterns which you can apply to improve the

resiliency of your cloud-native application. A short and by

no means complete summary of some common

techniques is given below:

• Throttling. By throttling incoming requests, a

service can protect itself from unexpected spikes

in traffic and potential denial-of-service attacks

which can otherwise have cascading effects on

other application components.

• Retries and the Circuit Breaker pattern: Enable

the application to handle transient failures by

implementing retry logic. Use exponential back-

off to prevent overloading the service being

called and consider using the circuit-breaker

pattern which cuts all calls to a service that is

failing for a limited time to enable it more

freedom to recover.

• Prefer stateless services. Where a service or

component is stateless, it can be easily

redeployed or scaled to handle failures or

changes in load, for example using Azure App

Service or VM Scale Sets with auto-scale. By

removing local state and storing all state in a

purpose-built service such as Azure Storage,

Azure SQL Database, or CosmosDB, you can

greatly simply and improve the resiliency of your

application. By gathering state in a handful of

purpose-built storage service, you can better

leverage the resilience of those services.

For microservice applications, note that Azure

Service Fabric can be used to run both stateless

and stateful services with high availability.

Similarly, SQL Server can be deployed in

containers orchestrated using the Azure

Kubernetes Service (AKS) to provide a high-

availability storage solution for microservices.

https://docs.microsoft.com/azure/virtual-machines/windows/maintenance-and-updates
https://docs.microsoft.com/azure/virtual-machines/windows/maintenance-and-updates
https://docs.microsoft.com/en-ie/azure/virtual-machines/windows/maintenance-and-updates
https://docs.microsoft.com/en-ie/azure/virtual-machines/windows/maintenance-and-updates
https://docs.microsoft.com/azure/virtual-machines/troubleshooting/understand-vm-reboot
https://docs.microsoft.com/azure/virtual-machines/windows/manage-availability
https://en.wikipedia.org/wiki/Stateless_protocol
https://docs.microsoft.com/sql/linux/tutorial-sql-server-containers-kubernetes?view=sql-server-linux-2017
https://docs.microsoft.com/sql/linux/tutorial-sql-server-containers-kubernetes?view=sql-server-linux-2017
https://docs.microsoft.com/sql/linux/tutorial-sql-server-containers-kubernetes?view=sql-server-linux-2017

PRINCIPLE 1: BUILD TO FAIL PAGE 15

aka.ms/practiceplaybooks

• Use asynchronous signaling. Consider a

shopping cart application that sends a

confirmation email when an order is placed. If the

check out process sends the email synchronously,

then the checkout will fail if the mail server used

to send the email is unavailable, resulting in a lost

order. Instead, the confirmation email should

simply be queued as an asynchronous task to be

completed later. Once the queue entry is written,

the shopping cart application can complete the

order. A separate process can read the queue and

send the email later. In the event of a failed mail

server, the emails can remain on the queue for

later processing once the mail server is fixed.

This is an example of asynchronous signaling. By

decoupling tasks, failures in one part of the

application do not block other parts of the

application from working correctly. Decoupling

also promotes code reuse, agility and ease of

maintenance. A variety of Azure services are

available to support asynchronous messaging

between application components, such as

Storage queues, and Service Bus. Queues can also

help smooth out spikes in demand to a more

steady-state load.

Further Reading

The Azure Architecture Center contains a wealth of

detailed information to help you create resilient

application designs. This has been written by the Azure

Customer Advisory Team based on their real-world

experience with many of Azure’s most challenging

customers. There is information for both infrastructure

and cloud-native architectures. Start with the overview

Designing reliable Azure applications, and from there dive

into the more detailed materials. There is information on

every aspect of building reliable systems, including

defining requirements, architecture, testing, deployment,

monitoring, disaster response and recovery. Be sure to

review your design against the resiliency checklist for

Azure services.

https://docs.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://azure.microsoft.com/services/service-bus/
https://docs.microsoft.com/azure/architecture/reliability/
https://docs.microsoft.com/azure/architecture/reliability/
https://docs.microsoft.com/en-ie/azure/architecture/checklist/resiliency-per-service
https://docs.microsoft.com/en-ie/azure/architecture/checklist/resiliency-per-service

PRINCIPLE 2: SELF-SERVICE PAGE 16

aka.ms/practiceplaybooks

Principle 2: Self-Service
Self-Service is the principle that you can manage almost every aspect of your Azure resources

yourself, without having to raise tickets or for others to respond.

A common cloud misconception is that because the

service is operated by the cloud provider, you have much

less control over the resources and infrastructure that

deliver your applications and services. The fear is that the

cloud is a ‘black box’ under the provider’s control, and you

will not have the visibility or control you need to pro-

actively maintain the service and respond to incidents.

The reality is that Microsoft Azure provides many features

that give you insight into the health and behavior of your

resources and enable you to configure and manage those

resources for yourself. It is certainly true that cloud

providers such as Microsoft Azure take responsibility for

their physical infrastructure, providing you with a set of

virtual resources and services that run on top. However,

those services still offer extensive monitoring and

management capabilities. Once you master those

capabilities, you should find you still have deep insight

into your application health and that Azure provides all

the control levers you need.

There are two parts to the Self-Service principle. The first is

learning how to take full advantage of the monitoring and

management features provided by Azure, so you can

quickly and effectively manage your resources. The

second is designing your application and supporting

processes to promote self-service, so each member of

each team can work efficiently and effectively, completing

their tasks directly rather than having to raise tickets and

wait for others to respond.

The Self-Service principle applies at several levels. It

applies to individual resources, including resource

diagnostics, deployment, and configuration. It also applies

at the application or service level, for example using Azure

Monitor Application Insights and Network Watcher for

end-to-end application diagnostics, performance

measurement and monitoring. This applies to both IaaS-

and PaaS-based applications.

When applying the Self-Service principle in your own

applications, a key aspect is ease and speed of use. Not

only should the necessary controls be supported, they

should be quick and easy to use. This requires investment

in the right management tools to support your

application. These may range from simple scripts to full-

fledged management APIs and portals.

Common Operations team scenarios that should be fully

supported include build and deployment, hot-fixing,

scaling (up or down), configuring and patching virtual

machines, configuring and adjusting monitoring and

dashboards, and managing security settings to protect the

service.

For Support teams, it is important to be able to investigate

all customer settings. Subject to appropriate controls, the

ability to work ‘on behalf of’ the customer to remedy

issues quickly can be very useful.

PRINCIPLE 2: SELF-SERVICE PAGE 17

aka.ms/practiceplaybooks

Using the principle

Azure is not a ‘black box’, it is an open and flexible hosting platform. Take advantage of the

wide variety of management features to gain full control over your resources.

AZURE MARKETPLACE

The Azure Marketplace offers a wide range of third-party

software and services. You can embed these in your

application to accelerate your time-to-market and gain

rich functionality. Each service deploys automatically into

your subscription and enables you to manage the

software for yourself.

VIRTUAL MACHINE SELF-SERVICE

Each service in Azure contains a range of features to help

you manage that service. These features typically include

configuration settings, monitoring metrics, and diagnostic

logs. In some cases, additional service-specific

management features are included. For example, in the

screenshot below you can see how Azure Virtual Machines

support a comprehensive range of monitoring, support

and troubleshooting features:

We’ll now take a closer look at just one of these features –

the Azure Virtual Machine Serial Console.

Serial Console

One of the differences between the cloud when compared

to running your own virtualized environment using

VMware or Hyper-V is that the cloud does not grant you

full access to the underlying host hardware and

hypervisor. Under normal circumstances, this is not a

problem since your focus is on deploying and managing

your virtual machines. However, occasionally a problem

arises that blocks your remote access to the virtual

machine, such as an OS misconfiguration causing a crash

at boot time. Lower-level access to the VM is required to

diagnose and resolve such issues.

The Azure Serial Console access is a very useful feature to

address this scenario. It provides a text-based console

interface to either Linux or Windows virtual machines,

PRINCIPLE 2: SELF-SERVICE PAGE 18

aka.ms/practiceplaybooks

providing low-level command-line access independent of

networking configuration or operating system state.

Serial Console is only available via the Azure Portal and

requires Virtual Machine Contributor RBAC permissions or

higher. It also requires that virtual machine boot

diagnostics are enabled, which is used to log all access.

For high-security environments where serial console

access is not permitted, it can be disabled at subscription

level for all VMs in that subscription.

Common scenarios that can be resolved using the Serial

Console include:

• Incorrect firewall rules or other network

misconfiguration

• Filesystem corruption

• Remote access issues

• Interaction with the boot loader

On Windows, the Serial Console uses the Microsoft
Windows Server Emergency Management Services
command set. You can run a cmd.exe session in the
Serial Console window, giving access to the more
familiar Windows command line.

On Linux, you can access the GRand Unified Bootloader

(GRUB mode) by restarting your VM with the Serial

Console window open. This can also be used to access

single user mode. The Serial Console for Linux can also be

used to issue SysRq commands and Non-Maskable

Interrupts (NMI).

For more information, see Azure Serial Console for

Windows and Azure Serial Console for Linux.

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc787940(v=ws.10)
https://aka.ms/serialconsolewindows
https://aka.ms/serialconsolewindows
https://aka.ms/serialconsolelinux

PRINCIPLE 2: SELF-SERVICE PAGE 19

aka.ms/practiceplaybooks

NETWORK WATCHER

Another powerful collection of self-service tools is the

Azure Network Watcher, which is a hub providing a

central point of access for a wide range of network

monitoring and diagnostics features.

Network troubleshooting can be time-consuming and

difficult, requiring access to low-level diagnostics such as

packet captures. Network watcher provides both powerful

low-level tools to enable in-depth investigations as well as

intelligent diagnostic tools to help speed up your

investigations.

Key features of Network Watcher include:

• Network connection and performance

monitoring, for both Azure and external networks

• Network topology mapping and next-hop

diagnostics

• Connectivity diagnostics and monitoring

• VPN diagnostics

• Packet captures

• Diagnostic log configuration and analytics

For further information, see What is Azure Network

Watcher?

Further Reading

In addition to the built-in management features, it can be

useful to build custom scripts to integrate Azure tasks into

your existing management tools. A common example is

billing, where it can be useful to extract Azure usage

information to feed into a billing system. As an example,

this blog post by Dan Maas shows how to query the Azure

rate card API using the Azure CLI.

https://docs.microsoft.com/azure/network-watcher/network-watcher-monitoring-overview
https://docs.microsoft.com/azure/network-watcher/network-watcher-monitoring-overview
https://medium.com/@dmaas/how-to-query-the-azure-rate-card-api-for-cloud-pricing-complete-step-by-step-guide-4498f8b75c2c
https://medium.com/@dmaas/how-to-query-the-azure-rate-card-api-for-cloud-pricing-complete-step-by-step-guide-4498f8b75c2c

PRINCIPLE 3: FREEDOM OF CHOICE PAGE 20

aka.ms/practiceplaybooks

Principle 3: Freedom of Choice
Choose the cloud hosting technology based on the full range available. Avoid tunnel-vision

and sticking only with what you already know.

Azure offers a multiple technology platforms on which to

build and host your applications. These range from IaaS

VMs, to Azure App Service, to microservice and container

orchestration services such as Azure Kubernetes Service

and Azure Service Fabric, to fully serverless technologies

such as Azure Functions and Azure Logic Apps. There is

also a wide range of data storage options, from Storage

Accounts to Azure SQL Database to CosmosDB. And this is

only a sample to illustrate the range available!

Within each of these, there are again a range of options.

There are over 100 different virtual machine SKUs to

choose from, of various sizes across a range of VM families

such as general purpose, compute optimized, memory

optimized, storage optimized, and specialist hardware

such as graphics cards. Within Azure App Service there is a

range of service tiers, and a range of instances sizes within

each tier. And so on.

Faced with all this choice, it is easy to become

overwhelmed. A common pattern is for people to move

towards their comfort zones, making technology choices

based on their past experience and familiarity rather than

the pros and cons of each option available and the

technical and business requirements of the application.

The ‘Freedom of Choice’ principle means making the best

technology choices from the full range available, based on

the technical needs of your application and your business

constraints. One such choice is the technology platform

for the application, and the appropriate service SKU for

that platform. Another is the choice of data storage to use.

Freedom of Choice also means being aware of existing

services that can save you ‘re-inventing the wheel’.

Services such as Stream Analytics or Azure Bastion address

specific scenarios in a highly targeted and efficient PaaS

solution. It is usually preferable to consume such services

rather than build your own equivalent service.

AZURE MARKETPLACE

Freedom of Choice includes the freedom to choose

existing solutions over building your own. The Azure

Marketplace provides a wide range of third-party

offerings which can address many common scenarios.

Why build an email service, when you can simply use the

SendGrid service from the Marketplace? Even for simple

scenarios such as SQL Server installed on a VM, why invest

in automating the installation when you could use a pre-

installed VM image from the Marketplace?

OPEN SOURCE

Freedom of Choice also means not being tied to Microsoft

technologies. Azure supports a wide range of Linux
distributions for both virtual machines and other

platforms such as App Service. You can choose from a

broad range of development languages, including C#,

Java, Python, Ruby, PHP, Node, and more. And you can

use a wide range of developer tools for source control,

https://azure.microsoft.com/services/stream-analytics
https://azure.microsoft.com/en-us/services/azure-bastion/
https://azuremarketplace.microsoft.com/
https://azuremarketplace.microsoft.com/
https://azure.microsoft.com/overview/linux-on-azure/
https://azure.microsoft.com/overview/linux-on-azure/

PRINCIPLE 3: FREEDOM OF CHOICE PAGE 21

aka.ms/practiceplaybooks

testing, build and deployment, such as Chef, Puppet,

Ansible, Jenkins, and Terraform.

LOCK IN

A common concern raised by those new to cloud

adoption is vendor lock-in. They are worried that

migrating to the cloud will tie them to a cloud provider,

reducing their future choices and leaving them exposed

to pricing changes. Putting aside the reality that

historically cloud prices have trended downwards rather

than up, the ability to switch providers is sometimes cited

as desirable.

Your flexibility to switch providers, and the work required

to execute a switch, will depend on your technology

platform choices. Virtual machines will run similarly on

any cloud. Third-party deployment tools such as

Terraform support multiple cloud providers, making it

easier to re-use existing automation. Containers are by

design extremely portable, and can easily be moved

across cloud providers. In contrast, an application written

to use technologies that are specific to a particular cloud

(such as Azure Functions, for example) may require more

effort to move.

Moving data between providers can be more difficult,

since it can require application downtime. Be sure to take

into account the data volume and available bandwidth to

calculate the time required to migrate all data. Services

such as the Azure Data Migration Service can help, by

providing incremental transfers while applications are still

running, allowing you to keep downtime to a minimum.

https://azure.microsoft.com/services/database-migration/

PRINCIPLE 3: FREEDOM OF CHOICE PAGE 22

aka.ms/practiceplaybooks

Using the Principle

Take advantage of Microsoft guidance to help you choose the appropriate compute and data

platforms for your application.

The most fundamental choices when choosing cloud

technologies is whether to adopt an IaaS, PaaS, or SaaS

approach, and whether the application will be cloud-only

or a hybrid between on-premises and cloud. Each

approach provides different advantages and different

responsibilities, and typically requires a trade-off between

many factors such as time, engineering effort, feature set,

on-going management costs, backward compatibility,

and so on. The following diagram summarizes the

responsibilities of each approach.

COMPUTE

Even within IaaS and PaaS approaches, there are multiple
technologies available. The Azure Architecture Center
includes helpful guidance on choosing a compute service,
including a detailed comparison of compute services. The
decision tree below provides a useful guide to some of the
questions you should ask and the range of compute options
available. Remember, this will only guide your technology
platform selection, there will still be other choices to make
within that platform.

Suppose you have chosen an Infrastructure-as-a-Service

approach using Azure VMs. You still face the challenge of

choosing which VM family and instance size to adopt.

Firstly, don’t treat this like an on-premises hardware

investment. You can easily change VM SKU later if you

find your initial choice is sub-optimal. If you are migrating

an existing workload, take advantage of Azure Migrate to

assess your existing environment and make

recommendations based on your existing machines and

their utilization.

DATA

The Architecture Center also includes guidance on

choosing a data store, including a data store
comparison. Don’t assume that your application must be

tied to a single data store. Increasingly, cloud-native

applications adopt a polyglot storage approach, using

multiple storage technologies for different purposes.

For example, consider an e-commerce application. The

data used by the system is stored across multiple storage

types, each chosen for the data it stores best:

• File Storage is used to store product images and

videos that are displayed to users.

• A Relational Database is used to store Product

Orders where transactions and high consistency

are needed.

• A Document Database is used to store Product

Catalog information as well as Community Posts,

allowing better scaling for a high volume of reads

and writes.

• A Key/Value store is used by the Website to

provide a much faster mechanism to reading and

writing to store User Session and Shopping Cart

information that is accessible across all instances

of the website.

• A Graph store is used to store a Customer and

Product social graph used for making product

recommendations.

https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-overview
https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-comparison
https://azure.microsoft.com/services/azure-migrate/
https://docs.microsoft.com/azure/architecture/guide/technology-choices/data-store-overview
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-comparison
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-comparison

PRINCIPLE 3: FREEDOM OF CHOICE PAGE 23

aka.ms/practiceplaybooks

Further Reading

The Azure Architecture Center includes in-depth guidance

on designing Azure applications, including how to choose

between the various technologies available, for compute

and storage.

The Architecture Center also includes guidance on

microservices architecture, including how to choose

between microservice compute options. The Azure

documentation includes additional guidance on choosing

between the various container services in Azure.

Choosing the right technology goes hand-in-hand with

choosing the right application architecture. The

Architecture Center also includes architecture patterns

and reference architectures for common scenarios.

Source: https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-decision-tree

https://docs.microsoft.com/azure/architecture/guide/technology-choices/data-store-comparison
https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-overview
https://docs.microsoft.com/azure/architecture/guide/technology-choices/data-store-overview
https://docs.microsoft.com/en-us/azure/architecture/microservices/
https://docs.microsoft.com/azure/architecture/microservices/design/compute-options
https://docs.microsoft.com/azure/architecture/microservices/design/compute-options
https://docs.microsoft.com/dotnet/architecture/modernize-with-azure-containers/modernize-existing-apps-to-cloud-optimized/choosing-azure-compute-options-for-container-based-applications
https://docs.microsoft.com/dotnet/architecture/modernize-with-azure-containers/modernize-existing-apps-to-cloud-optimized/choosing-azure-compute-options-for-container-based-applications
https://docs.microsoft.com/azure/architecture/guide/architecture-styles/
https://docs.microsoft.com/azure/architecture/reference-architectures/

PRINCIPLE 4: TRUSTED PAGE 24

aka.ms/practiceplaybooks

Principle 4: Trusted
Every human creation is developed twice: first in the mind and then in the physical world. The

most important need for the shift from thinking to doing is trust.

This chapter is about trust, and the role it plays in enabling

cloud adoption. We will explore how Microsoft ensures

Azure is a trusted cloud platform and show how it enables

you to build trustworthy applications.

Using technology to create smarter processes that help

people to achieve more relies on trust. We need, as

individuals, to have trust in technology, processes and

other people in order to drive positive change.

Security, compliance and privacy are important

prerequisites for cloud adoption, and we will explore how

Azure supports each of these topics in depth. But trust is

also something more. Trust is a feeling. Without it we

stumble into our survival mechanisms: Fight, Flee or

Freeze. In the case of technology adoption, lack of trust

drives negative behaviors to avoid change, such as finding

objections rather than finding solutions.

Trust cannot be taken for granted. To earn trust, we need

to consistency demonstrate trustworthy behavior. These

behaviors include competence, reliability, transparency

and honesty. Trust can also be supported the testimony of

others and an established reputation. But if you fail to

maintain trust, it is hard to get it back, and loss of trust can

be devastating for an organization.

Trust is not just about technology. It is also about
people and processes. By building on a compliant
platform such as Microsoft Azure and leveraging the
controls Azure provides you, you can more easily build
compliant solution for your applications.

SHARED RESPONSIBILITY MODEL

Cloud providers make huge investments to deliver secure

and compliant cloud platforms. However, with the wrong

design and implementation, you can still use a secure

cloud platform to deploy insecure applications that do not

meet compliance requirements, and which do not adhere

to data privacy regulations.

Delivering trusted applications is therefore a shared

responsibility between you and your cloud provider. Some

areas are the responsibility of the cloud provider, such as

the physical security of the datacenter or the reliability of

the network. Other areas are your responsibility, such as

ensuring your application maintains data privacy by not

sharing personal data with unauthorized parties. In other

areas, such as patch management, the responsibility

varies: for IaaS deployments, VM patching is your

responsibility, whereas for PaaS and SaaS services it is the

responsibility of the cloud provider.

You are responsible for understanding which tasks belong

to you and which are taken care of by the cloud provider.

This will depend on the technology choices in your

application design. You must then ensure that the

appropriate tools, processes and training is in place to

ensure your responsibilities are met.

SECURITY

Microsoft provides a multi-layered approach to security,

from the physical datacenters and other infrastructure

through a wide range of technical protections and

security features to defend against a wide range of

potential threats. Security is baked into the platform at

every level. These features are supported by a team of

more than 3,500 global cybersecurity experts working to

protect your applications data in Azure.

Azure also provides a wide range of security features and

controls which you can use to build secure applications.

These cover a wide range of threats, allowing you to

protect your network, servers, data, and user identities.

Azure Security Center reviews your usage to recommend

security improvements, as well as providing centralized

visibility into your overall security posture.

While Azure Security Center started with an infrastructure

focus, it has now expanded to cover a number of platform

services. For example, it now supports building secure IoT

solutions.

Microsoft’s global scale provides another important

security advantage. Microsoft uses machine learning to

analyze vast sources of data including 18 billion Bing web

https://azure.microsoft.com/services/security-center/
https://azure.microsoft.com/blog/announcing-general-availability-for-the-azure-security-center-for-iot/
https://azure.microsoft.com/blog/announcing-general-availability-for-the-azure-security-center-for-iot/

PRINCIPLE 4: TRUSTED PAGE 25

aka.ms/practiceplaybooks

pages, 400 billion emails, 1 billion Windows device

updates and 450 billion monthly authentications. The

resulting insights enable a unique threat intelligence

capability that protects Azure services and your

applications.

COMPLIANCE

With over 90+ compliance offerings, Microsoft has the

most comprehensive compliance coverage of any cloud

service provider. These include global, country-specific,

and industry-specific certifications. But what does this

really mean?

As with security, compliance follows a shared

responsibility model. Just because your application is

hosted in Azure does not mean your application

automatically inherits the compliance certifications that

Azure has been awarded. Azure compliance—like any

other cloud provider—is a solid foundation you can build

upon. You still have overall responsibility for the

compliance certification for your application.

Whatever certifications your application needs to deliver,

with such a broad range of compliance certifications, the

chances are very high that Azure can provide you with a

compliant solution.

PRIVACY

The core privacy principle for all Azure services is that you

own your data. You have flexibility and choice in how and

where you store, process and protect your data in Azure.

Microsoft will never use your data for marketing or

advertising purposes. And if you leave Azure, Microsoft

has strict standards and processes for removing data from

its systems.

Azure also complies with many external privacy standards,

laws, and regulations, including: GDPR, ISO 27001, ISO

27018, European Union Model Clauses, HIPAA, HITRUST,

FERPA, Japan My Number Act, Canada PIPEDA, Spain

LOPD, and Argentina PDPA.

With GDPR top-of-mind for many organizations, it’s

important to understand how your relationship as a

Microsoft customer relates to the GDPR roles of data

controller, processor, and sub-processor. Where you are

the data controller and store data in the Microsoft Cloud,

then Microsoft takes the role of processor. Where you are

the data processor, then Microsoft is a sub-processor. In

each case, Microsoft accepts the responsibilities

associated with these roles, as described in the Microsoft

Online Service Terms. This clear approach enables you to

have confidence in your ability to meet your GDPR

obligations while storing personal data in the Microsoft

cloud.

http://www.microsoftvolumelicensing.com/DocumentSearch.aspx?Mode=3&DocumentTypeId=31
http://www.microsoftvolumelicensing.com/DocumentSearch.aspx?Mode=3&DocumentTypeId=31

PRINCIPLE 4: TRUSTED PAGE 26

aka.ms/practiceplaybooks

Azure Compliance Certifications

This table shows the current list of Azure compliance certifications. Click on the links in the

table for further details.

Global Government Industry Regional

CIS Benchmark CJIS 23 NYCRR Part 500 HDS (France)
BIR 2012
(Netherlands)

IT Grundschutz
Workbook (DE)

CSA Cloud Control
Matrix

CNSSI 1253
AFM + DNB
(Netherlands)

HIPAA/HITECH C5 (Germany) LOPD (Spain)

CSA-STAR-
Attestation

DFARS APRA (Australia) HITRUST
CCSL/IRAP
(Australia)

MeitY (India)

CSA-Star-
Certification

DoD DISA L2, L3, L5
AMF and ACPR
(France)

KNF (Poland)
CS Mark (Gold)
(Japan)

MTCS
(Singapore)

CSA STAR Self-
Assessment

DoE 10 CFR Part 810 CDSA MARS-E
Cyber Essentials
Plus (UK)

My Number
(Japan)

ISO 20000-1:2011 EAR (US Export) CFTC 1.31 (US)
MAS + ABS
(Singapore)

Canadian Privacy
Laws

NZ CC
Framework (NZ)

ISO 22301 FedRAMP DPP (UK) MPAA DJCP (China) PASF (UK)

ISO 27001 FIPS 140-2 EBA (EU) NBB + FSMA (Belgium) EN 301 549 (EU)
PDPA
(Argentina)

ISO 27017 IRS 1075 FACT (UK)
NEN-7510
(Netherlands)

ENS (Spain) TRUCS (China)

ISO 27018 ITAR FCA (UK) NERC ENISA IAF (EU)

ISO-9001 NIST 800-171
FDA CFR Title 21 Part
11

NHS IG Toolkit (UK)
EU-Model-
Clauses

IT Grundschutz
Workbook (DE)

SOC 1
NIST Cybersecurity
Framework (CSF)

FERPA OSFI (Canada)
EU-U.S. Privacy
Shield

LOPD (Spain)

SOC 2 Section 508 VPATS FFIEC (US) PCI DSS
GB 18030
(China)

SOC 3 FINMA (Switzerland) RBI + IRDAI (India) GDPR (EU)

WCAG 2.1 FINRA 4511 SEC 17a-4 G-Cloud (UK)

 FISC (Japan) Shared Assessments
IDW PS 951
(Germany)

 FSA (Denmark) SOX ISMS (Korea)

 GLBA TISAX (Germany)

 GxP

Source: https://www.microsoft.com/trustcenter/compliance/complianceofferings

http://download.microsoft.com/download/9/B/7/9B75D846-BDB9-41CB-86FF-F0ADFD15800B/CIS_Benchmarks-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/cjis
https://www.microsoft.com/en-us/trustcenter/compliance/NYCRR
http://download.microsoft.com/download/E/7/B/E7BC3E72-A6E5-4A10-96C9-3B210C4DBE35/HDS-Compliance.pdf
http://www.microsoft.com/en-us/trustcenter/Compliance/bir-2012
http://www.microsoft.com/en-us/trustcenter/Compliance/bir-2012
https://www.microsoft.com/en-us/trustcenter/Compliance/IT-Grundschutz
https://www.microsoft.com/en-us/trustcenter/Compliance/IT-Grundschutz
https://aka.ms/Office365ComplianceOfferings
https://aka.ms/Office365ComplianceOfferings
https://aka.ms/CNSSI_1253-Compliance
http://download.microsoft.com/download/A/E/5/AE505D51-DA54-4B2D-B1BD-C76D9102F36A/AFM-DNB-Compliance.pdf
http://download.microsoft.com/download/A/E/5/AE505D51-DA54-4B2D-B1BD-C76D9102F36A/AFM-DNB-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/hipaa
https://www.microsoft.com/en-us/trustcenter/Compliance/C5
https://www.microsoft.com/en-us/trustcenter/compliance/SpainLOPD
https://www.microsoft.com/en-us/trustcenter/compliance/csa-star-attestation
https://www.microsoft.com/en-us/trustcenter/compliance/csa-star-attestation
https://www.microsoft.com/en-us/trustcenter/compliance/dfars
https://www.microsoft.com/en-us/trustcenter/compliance/APRA
https://www.microsoft.com/en-us/trustcenter/Compliance/HITRUST
https://www.microsoft.com/en-us/trustcenter/compliance/ccsl
https://www.microsoft.com/en-us/trustcenter/compliance/ccsl
https://www.microsoft.com/en-us/trustcenter/Compliance/MeitY
https://www.microsoft.com/en-us/trustcenter/compliance/csa-star-certification
https://www.microsoft.com/en-us/trustcenter/compliance/csa-star-certification
https://www.microsoft.com/en-us/trustcenter/compliance/disa
http://download.microsoft.com/download/3/D/8/3D81D753-0896-4D8C-9131-D9F9153942DB/AMF-ACPR-Compliance.pdf
http://download.microsoft.com/download/3/D/8/3D81D753-0896-4D8C-9131-D9F9153942DB/AMF-ACPR-Compliance.pdf
http://download.microsoft.com/download/B/3/9/B392C073-FDF7-4F0C-8765-03ACEE5E0289/KNF-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/cloud-security-mark
https://www.microsoft.com/en-us/trustcenter/compliance/cloud-security-mark
https://www.microsoft.com/en-us/trustcenter/compliance/mtcs
https://www.microsoft.com/en-us/trustcenter/compliance/mtcs
https://www.microsoft.com/en-us/trustcenter/compliance/csa-self-assessment
https://www.microsoft.com/en-us/trustcenter/compliance/csa-self-assessment
https://aka.ms/DOE-Compliance
https://www.microsoft.com/en-us/trustcenter/compliance/cdsa
https://www.microsoft.com/en-us/trustcenter/compliance/mars-e
https://www.microsoft.com/en-us/trustcenter/compliance/UK-CEPlus
https://www.microsoft.com/en-us/trustcenter/compliance/UK-CEPlus
http://download.microsoft.com/download/0/E/C/0EC14DDA-6041-4841-A180-199870B136C4/MyNumberAct-Compliance.pdf
http://download.microsoft.com/download/0/E/C/0EC14DDA-6041-4841-A180-199870B136C4/MyNumberAct-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/Compliance/ISO-20000-1
https://aka.ms/EAR-Compliance
http://download.microsoft.com/download/9/A/9/9A9847FE-164A-4321-8112-50719D9EA877/CFTC1.31-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/MAS-ABS
https://www.microsoft.com/en-us/trustcenter/compliance/MAS-ABS
http://download.microsoft.com/download/1/9/3/19390188-F5C7-4819-80BB-30B84304E499/CanadianPrivacyLaws-Compliance.pdf
http://download.microsoft.com/download/1/9/3/19390188-F5C7-4819-80BB-30B84304E499/CanadianPrivacyLaws-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/nzcc
https://www.microsoft.com/en-us/trustcenter/compliance/nzcc
https://www.microsoft.com/en-us/trustcenter/compliance/iso-22301
https://www.microsoft.com/en-us/trustcenter/compliance/fedramp
http://download.microsoft.com/download/3/C/6/3C63143B-41BA-4ED7-A2A8-DDE6B0B04036/DPP-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/mpaa
https://aka.ms/DJCP-Compliance
http://download.microsoft.com/download/C/9/7/C97C7B62-F582-4C25-8ABB-80DFB87628CA/PASF-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/iso-iec-27001
https://www.microsoft.com/en-us/trustcenter/compliance/fips
http://download.microsoft.com/download/A/9/3/A93DEE11-4758-4E03-8035-D8C5843B70C2/EBA-Compliance.pdf
http://download.microsoft.com/download/5/F/3/5F3E78C9-767C-4260-92D9-A244EF3BA607/NBB-FSMA-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/compliance-offerings/en-301-549
http://download.microsoft.com/download/7/0/1/7018F836-AE7C-4E98-8159-C6AA04D803CB/PDPA-Compliance.pdf
http://download.microsoft.com/download/7/0/1/7018F836-AE7C-4E98-8159-C6AA04D803CB/PDPA-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/iso-iec-27017
https://www.microsoft.com/en-us/trustcenter/compliance/irs
https://www.microsoft.com/en-us/trustcenter/compliance/fact
https://www.microsoft.com/en-us/trustcenter/compliance/nen-7510
https://www.microsoft.com/en-us/trustcenter/compliance/nen-7510
https://www.microsoft.com/en-us/trustcenter/compliance/spainens
https://aka.ms/TRUCS-Compliance
https://www.microsoft.com/en-us/trustcenter/compliance/iso-iec-27018
https://www.microsoft.com/en-us/trustcenter/compliance/itar
https://www.microsoft.com/en-us/trustcenter/compliance/FCA-UK
https://aka.ms/NERC-Compliance
https://aka.ms/ENISA
https://www.microsoft.com/en-us/trustcenter/compliance/iso-9001
https://aka.ms/NIST_800-171-Compliance
https://www.microsoft.com/en-us/trustcenter/compliance/fda
https://www.microsoft.com/en-us/trustcenter/compliance/fda
https://www.microsoft.com/en-us/trustcenter/Compliance/NHS
https://www.microsoft.com/en-us/trustcenter/compliance/eu-model-clauses
https://www.microsoft.com/en-us/trustcenter/compliance/eu-model-clauses
https://www.microsoft.com/en-us/trustcenter/Compliance/IT-Grundschutz
https://www.microsoft.com/en-us/trustcenter/Compliance/IT-Grundschutz
https://www.microsoft.com/en-us/trustcenter/compliance/soc
https://www.microsoft.com/en-us/trustcenter/compliance/NIST_CSF
https://www.microsoft.com/en-us/trustcenter/compliance/NIST_CSF
https://www.microsoft.com/en-us/trustcenter/compliance/ferpa
http://download.microsoft.com/download/6/9/9/699E9434-6376-4F2A-A666-1F10D715B898/OFSI-Compliance.pdf
http://download.microsoft.com/download/3/F/4/3F4C5C35-6653-4E9B-8C4F-917B1064F537/PrivacyShield-Compliance.pdf
http://download.microsoft.com/download/3/F/4/3F4C5C35-6653-4E9B-8C4F-917B1064F537/PrivacyShield-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/SpainLOPD
https://www.microsoft.com/en-us/trustcenter/compliance/soc
https://www.microsoft.com/trustcenter/compliance/compliance-offerings/us-section-508
https://www.microsoft.com/en-us/trustcenter/compliance/FFIEC
https://www.microsoft.com/en-us/trustcenter/compliance/pci
https://aka.ms/GB_18030-Compliance
https://aka.ms/GB_18030-Compliance
https://www.microsoft.com/en-us/trustcenter/compliance/soc
http://download.microsoft.com/download/4/6/A/46AE2B08-49ED-478F-8E64-6BDE9B56C5F4/FINMA-Compliance.pdf
http://download.microsoft.com/download/3/5/A/35AA1544-5E50-43C7-AA08-4911E5429205/RBI-IRDAI-Compliance.pdf
https://aka.ms/GDPR-Compliance
https://www.microsoft.com/trustcenter/compliance/compliance-offerings/wcag
http://download.microsoft.com/download/6/B/2/6B20520B-E264-4B58-9EE2-DD6C87D9E254/FINRA-Compliance.pdf
http://download.microsoft.com/download/E/5/2/E52103E7-C1BB-4118-9725-4452FEA931D8/SEC17a-4(f)-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/uk-g-cloud
https://www.microsoft.com/en-us/trustcenter/compliance/fisc
https://aka.ms/Shared_Assessments-Compliance
http://download.microsoft.com/download/E/9/7/E9793230-8137-4297-BC5E-A43F8732CCCD/FSA-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/SOX
http://download.microsoft.com/download/2/C/6/2C6FFA1C-1BA8-48E8-887A-4EA52E256AF3/K-ISMS-Compliance.pdf
https://www.microsoft.com/en-us/trustcenter/compliance/GLBA
http://download.microsoft.com/download/5/C/3/5C32AD74-703F-4B61-A290-B00B96E8DD8D/TISAX-Compliance.pdf
https://aka.ms/GxP-Compliance

PRINCIPLE 4: TRUSTED PAGE 27

aka.ms/practiceplaybooks

Using the Principle

Apply the ‘Trusted’ principle to build secure, compliant applications that meet your industry

and regional compliance requirements and reduce your risk exposure.

A complete review of all security, compliance and privacy

features in Azure would be far beyond the scope of this

document. Instead, we will highlight some key features

and provide a selection of references for further reading.

SECURITY

The Security Development Lifecycle

The Microsoft Security Development Lifecycle (SDL) was

developed by Microsoft originally to help its own

engineering teams develop secure applications. It covers

the entire application development lifecycle, from design

through development and testing to running services in

production. The SDL uses in-depth reviews, best-practice

engineering processes, and advanced code analysis tools

to reduce security flaws at each stage of the cycle.

Microsoft first shared the SDL in 2008 to help its

customers and others in the software industry to also

build secure applications. It is constantly updated to

reflect new threats, growing experience, and new

scenarios such as the cloud, IoT and AI. Adopting some or

all parts of the SDL is a proven way you can improve the

security of your applications.

Security Center

Azure provides a huge range of services, each with a

plethora of features. It can be hard to understand each

service you are using in enough depth to be confident

that your deployment follows all best practices. You’ve

done your best, but how can you know your deployment

is secure?

Microsoft’s field, support, and engineering teams have

extensive experience in helping customers to be

successful in their Azure adoption. This includes securing

applications against a wide range of threats. The

challenge lies in scaling this expertise and making it

accessible so that all customers can benefit.

Enter Azure Advisor and Azure Security Center. These

services are designed to capture Microsoft’s hard-won

experience and make it accessible to all Azure customers.

They do this by analyzing your deployments against an

extensive library of best practice rules and making

recommendations on how you can improve.

These rules are written by the engineering team based on

their in-depth knowledge of each Azure service, together

with the best practices and mistakes they see when

supporting customers. Each rule comes with a test, clear

explanation, and specific recommendation of a change

you should consider. Recommendations in Azure Advisor

are grouped into cost saving, availability, performance,

and security. These security recommendations are also

exposed in Azure Security Center.

Security Center also provides a summary of compliance

with Azure policy. This enables you to see at a glance

whether your usage is continuing to meet the governance

rules defined for your organization.

Security Center integrates with Management Groups to

enable a single at-a-glance report into your security

stance across multiple subscriptions, representing any

team or group within your organization. This enables

security metrics and reviews to be implemented at scale

across the organization.

https://www.microsoft.com/en-us/securityengineering/sdl/
https://azure.microsoft.com/services/advisor/
https://azure.microsoft.com/services/security-center/

PRINCIPLE 4: TRUSTED PAGE 28

aka.ms/practiceplaybooks

Just-In-Time VM access

In addition to recommendations and reporting, Security

Center also includes several powerful security features.

One of these is Just-In-Time VM access, or JIT for short.

When running VMs in Azure, you sometimes need access

to do maintenance, such as patching, deploying an

update, or investigating an issue. This access is a potential

security vulnerability, since it could also be targeted by an

attacker. To reduce the attack surface, the endpoint used

to access the VM should be closed when not in active use,

and only opened for limited periods to authorized

personnel.

The purpose of JIT is to make this easy. JIT allows you to

lock down your VM maintenance endpoints. When access

is needed, an engineer makes an access request. If their

role-based access control (RBAC) permissions are

sufficient, access is granted and the endpoint opened.

After a pre-defined time interval, say 2 hours, access is

automatically restricted once more.

JIT can be configured for an individual VM from the VM

blade in the Azure portal (under ‘Configuration’).

Alternatively, you can also configure JIT from the JIT blade

within Azure Security Center. This approach has the

advantage of allowing central configuration of JIT settings

across multiple VMs.

To start, open Azure Security Center and click on ‘Just-in-

time VM access’ in the left nav.

Click the ‘Recommended’ tab to see Security Center

recommendations on servers where JIT should be

deployed.

Select the VMs you with to use with JIT, and click the

‘Enable JIT on n VMs’ button.

In the JIT configuration, you can select which ports and

protocols are controlled via JIT and the maximum time

access can be requested for. You can also which control

source IP addresses are permitted access—you can restrict

access to a specific CIDR (IP address range) block as part

of the JIT configuration, or allow the source IP to be

configured in each JIT request.

PRINCIPLE 4: TRUSTED PAGE 29

aka.ms/practiceplaybooks

To request access, navigate to the ‘Configured’ tab to see

the VMs with JIT enabled. Select one or more VMs and

click ‘Request access’.

When requesting access via Security Center, you specify

the ports, allowed source IP range and the duration. These

must all lie within the constraints imposed by the initial JIT

configuration.

You can also request access directly from the VM blade.

Simply click the ‘Connect’ button for the VM in the usual

way—the ‘Connect to virtual machine’ prompt is updated

to provide a ‘Request access’ button. This approach makes

the access request immediately using default settings.

Of course, enabling JIT and requesting access can also be

automated by using the Azure Powershell cmdlets:

$VMName = "dmserver33"
$RG = "demoRG"
$min = 60

#Get my IP address
$ip = Invoke-RestMethod http://ipinfo.io/json |
Select -exp ip

#Request access
Invoke-ASCJITAccess -VM $VMName -ResourceGroupName
$RG -Port 3389 -Minutes $min -AddressPrefix $ip

Access requests will only be approved if the requestor has

write access to the VM enabled in Azure’s role-based

access control (RBAC) permissions, and all access requests

are logged in the Azure Activity Log.

COMPLIANCE

Azure also includes a range of tools to help simplify and

accelerate your compliance journey.

The Service Trust portal is available to existing Office365,

Dynamics, and Azure customers at

https://servicetrust.microsoft.com/. Access requires you to

log in with your subscription credentials. In this portal, you

can find information about Microsoft’s implementation of

controls and processes to protect Microsoft cloud services.

This includes a range of audit reports for several Azure

certifications.

The Service Trust portal also includes access to the

Compliance Manager tool. This is a workflow-based risk

assessment tool that helps you manage your compliance

activities. It includes:

• Real time risk assessments on Microsoft cloud

services
• Actionable insights to improve your data

protection capabilities

• Simplifies compliance process through built in

control management and audit-ready reporting

Further Reading

The central hub for Azure compliance information is the

Azure Trust Center. This is the launch pad where all

information regarding compliance regarding azure can be

found.

For comprehensive documentation on all aspects of
Azure security, see the Azure Security documentation.

Microsoft has also provided a detailed white paper on
best practices for securing Azure applications.

There are many established principles and best
practices for ensuring systems are secure by design. See
for example the OWASP Security By Design principles
and the security design guidance in the Azure
Architecture Center.

For more information on Azure Compliance, see the
Overview of Microsoft Azure Compliance white paper.

https://servicetrust.microsoft.com/
https://www.microsoft.com/TrustCenter/Compliance/default.aspx
https://docs.microsoft.com/azure/security/
https://azure.microsoft.com/mediahandler/files/resourcefiles/security-best-practices-for-azure-solutions/Azure%20Security%20Best%20Practices.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/security-best-practices-for-azure-solutions/Azure%20Security%20Best%20Practices.pdf
https://www.owasp.org/index.php/Security_by_Design_Principles
https://docs.microsoft.com/en-us/azure/architecture/security/overview
https://docs.microsoft.com/en-us/azure/architecture/security/overview
https://gallery.technet.microsoft.com/Overview-of-Azure-c1be3942

PRINCIPLE 5: CONTINUOUS CHANGE PAGE 30

aka.ms/practiceplaybooks

Principle 5: Continuous Change
The cloud is constantly evolving. Your applications should also evolve to take advantage of

best practices and new features.

Traditional application development and deployment

follows a linear flow:

• The requirements are defined, and handed to the

Development team

• The code is written, and handed over to the Test

team

• The application is tested, and after a bug-fix

phase, handed over to the Operations team

• The application is deployed and managed in

production

This linear, waterfall-style development process runs in

parallel with hardware provisioning. This typically takes 3-

6 months, and each software release is a multi-month

project. Once purchased, the hardware is inflexible and

acts as a constraint on future changes.

In the cloud, the hardware constraints are removed.

Provisioning takes only minutes and can be easily adapted

to changing requirements. In addition, the cloud is

constantly evolving, with new features and new services

being released every week. To take advantage, a more

dynamic approach to both infrastructure and application

architecture is required.

The ‘Continuous Change’ principle means embracing a

dynamic, changing view of your application. Application

are no longer in ‘maintenance mode’, being managed by

Operations but no longer changing. Instead, they are

constantly evolving to adapt to changing business needs,

adopt new cloud features and services, and resolve

underlying issues.

For example: where today you use IaaS VMs, tomorrow

you might use a PaaS service. Where today you are

deployed in US data centers only, tomorrow you might

expand to Europe and Asia. Where today you use an on-

premises network security appliance, tomorrow you use a

virtual appliance from the Azure Marketplace. And so on.

Embracing Continuous Change requires and promotes

continuous learning. Teams need to invest in their cloud

skills and keep abreast of new cloud features and services.

The benefits of Continuous Change are applications that

are responsive to changing business needs. They make

efficient use of cloud resources. They require less time and

effort to update and maintain.

PRINCIPLE 5: CONTINUOUS CHANGE PAGE 31

aka.ms/practiceplaybooks

Using the Principle

Adopt Agile processes, a DevOps team structure, and a continuous integration/continuous

deployment pipeline to enable Continuous Change.

For a service to be continually evolving means that it is

constantly updated. This isn’t possible if each code release

follows a multi-month waterfall development process.

Embracing the principle of Continuous Change requires

you to work differently.

Three significant changes are required to fully embrace

Continuous Change:

1. Adopt an Agile development methodology

2. Create a DevOps team structure

3. Provide a continuous development / continuous

deployment (CI/CD) pipeline

Let’s look at each in turn.

AGILE METHODOLOGIES

Agile development methodologies are characterized by

short development cycles and rapid feedback loops, in

which software is developed in short, iterative ‘sprints’,

each delivering incremental value to production. This is a

fundamentally different approach to software

development favoring a reactive, iterative approach

instead of relying on large up-front plans. Collectively,

these approaches are known as Agile development

methodologies, and their principles are captured in the

Manifesto for Agile Software Development, first published

in 2001.

There are a variety of Agile methodologies to choose

from, such as Lean software development, Kanban, or

Scrum. Whichever you choose, the essential requirement

for enabling Continuous Change is to avoid long waterfall

projects and embrace short, iterative development cycles.

DEVOPS

A DevOps team structure breaks down the boundaries

between Development, Test and Operations teams.

Instead a single, combined team is responsible for the

end-to-end application from design through

implementation and into production. This provides

developers with first-hand experience of production

issues, accountability for overall availability, and the

authority to prioritize work to deliver on the overall

service health and feature set.

A DevOps team should follow a DevOps workflow, as

shown below. It is a continuous cycle of learning from and

improving the production environment. DevOps thereby

promotes ongoing investment in service quality, with

investments prioritized based on real-world production

experiences.

While each cycle delivers only incremental improvement,

the cumulative effect can be transformative. For an

inspiring analogy, see how continuous improvement has

refined a Formula 1 pit stop between 1950 and the present

day.

This virtuous cycle is not limited to the application code. It

includes all aspects of the application, including the cloud

infrastructure and services that the application runs on,

and can be updated and scaled as required. This will be

discussed further in the next principle, ‘Software-Defined’.

CONTINUOUS DEVELOPMENT / CONTINUOUS

DEPLOYMENT

To enable successful Agile development by DevOps

teams, the right tools are needed. They are best supported

by a continuous integration / continuous deployment

(CI/CD) release pipeline. CI/CD provides an automated

pipeline by which each code change is automatically

compiled and deployed to a test environment. Once

http://agilemanifesto.org/
https://www.youtube.com/watch?v=Xz9sRmg0_f8
https://www.youtube.com/watch?v=Xz9sRmg0_f8

PRINCIPLE 5: CONTINUOUS CHANGE PAGE 32

aka.ms/practiceplaybooks

tested—where possible, with automated testing—the

release moves to a staging environment and then to a

production environment.

CI/CD also ensures an up-to-date, releasable code-base is

always available. A customer-impacting bug can be

prioritized and a fix release quickly.

An effective CI/CD pipeline enables rapid releases to

production with minimal overhead. Should an unexpected

issue arise, a CI/CD pipeline also makes it straightforward

to roll back to the previous release.

Apply cloud principles is not something only for the

operations. When architecting the solutions, you should

already reckon with the cloud principles. When doing so

you will reap the benefits on cost, agility and more.

Many Azure PaaS services, such as Azure App Service,

include native support for CI/CD. However, CI/CD can also

be used with Azure virtual machines.

When building and design one should always have the

cloud in mind. Incorporating cloud principles in the

design and Built of cloud services is a skill set that is not

only part of the Cloud operations but also for the DevOps.

Source: https://azure.microsoft.com/solutions/architecture/cicd-for-azure-vms/

https://azure.microsoft.com/solutions/architecture/cicd-for-azure-vms/
https://azure.microsoft.com/solutions/architecture/cicd-for-azure-vms/

PRINCIPLE 5: CONTINUOUS CHANGE PAGE 33

aka.ms/practiceplaybooks

APPLICATION MIGRATION

When migrating on-premises applications to the cloud,
we often refer to the 6 R's
• Rehost: Redeploy as-is using cloud virtual machines
• Refactor: Make minimal changes to adapt the

application to the cloud, for example using Azure SQL
Database rather than SQL Server in a VM

• Rearchitect: Decompose the application to migrate
each component to an appropriate cloud service
within a cloud-optimized architecture, retaining code
where possible and writing new code as necessary.

• Rebuild: Start afresh and create a new cloud-native
application to replace the on-premises version

• Replace: Decommission the application and adopt a
SaaS service instead.

• Retire: Decommission the application and migrate any
existing users to alternative services.

For may migrations, this is not a one-time decision. For

example, an application may initially be rehosted in Azure,

since this approach offers the faster migration with low

risk and minimal up-front investment.

Applying the Continuous Change principle will see this

migration evolved over time, being refactored and

rearchitected to make greater use of cloud-native

technologies.

This evolution occurs post-migration, as part of the

‘Optimize’ phase of a typical migration project.

Further Reading

Azure provides extensive features for delivering CI/CD

pipelines that enable DevOps teams and Agile

methodologies. For more information, see DevOps on

Azure.

The following books provide an insightful perspective on

the challenges and power of adopting DevOps. The first

provides a practical guide, whereas the second adopts a

novel format (literally, as a novel!) to convey the value

DevOps can bring.

• The DevOps Handbook, ISBN 978-1-942788-00-3

• The Phoenix Project, ISBN 978-0-9882625-0-8

An interesting perspective on the need to adopt DevOps

to take advantage of the cloud is provided in DevOps and

Cloud: Like Chocolate and Peanut Butter.

Download the Effective DevOps e-book from O’Reilly to

learn more on building a DevOps culture in your

organization.

https://azure.microsoft.com/solutions/devops/
https://azure.microsoft.com/solutions/devops/
https://www.cio.com/article/2938919/cloud-computing/devops-and-cloud-like-chocolate-and-peanut-butter.html
https://www.cio.com/article/2938919/cloud-computing/devops-and-cloud-like-chocolate-and-peanut-butter.html
https://azure.microsoft.com/resources/effective-devops/

PRINCIPLE 6: SOFTWARE-DEFINED PAGE 34

aka.ms/practiceplaybooks

Principle 6: Software-Defined
Use automation for deployment and common operations tasks for consistency, agility and

efficiency.

Our 6th principle is that every aspect of your application

should be Software-Defined.

From a customer point of view, every Azure resource is

managed remotely using APIs, command line tools and

management portals. Microsoft is responsible for all

physical infrastructure. This means that every aspect of

your application deployment can be automated. This is

supported by a variety of tools and scripts from both

Microsoft and third parties.

In a software-defined environment, there are no manual

steps required during deployment. Deploying a

completely new environment will require environment-

specific parameters to be defined. These include VM sizes

and instance counts, and external resources such as

domain names and SSL/TLS certificates. With these

prerequisites in place, the remainder of the deployment is

fully automated, resulting in a fully-functioning

application.

This automation is a key enabler of the continuous

integration / continuous deployment pipeline we

discussed in Principle 5. The scripts used to automate

environment creation and deployment are managed

similarly to application code—they can be stored in a

source code repository and changes can be version

controlled. This is known as an ‘Infrastructure as Code’

(IaC) approach.

Like many of the other principles, the Software-Defined

principle requires a change of mindset. It doesn’t suffice

simply to automate your infrastructure provisioning and

deployment. Any changes to the infrastructure or the

application should be made using the automation.

For example: to change the size of a VM, the script or

parameter file used by the automation to define the VM

should be updated, checked in, and deployed. Changing

the VM size in any other way—such as via the Azure

portal—would mean the automation and the deployed

environment become out of sync, and the change will be

overwritten the next time the deployment automation is

run. Direct changes to the environment should be

reserved for critical break-fix changes only, which are then

back-ported to the automation.

In addition, the Software-Defined principle does not stop

at deployment. All on-going operations tasks should also

be automated. This includes deployment of updates,

scaling the service up or down, and any other common

maintenance tasks. You can also automate how your

application responds to events. For example, to send an

email summary of daily usage, or to automatically reboot

a VM in the case of an out-of-memory alert.

Automation isn’t new. Developers and IT Professionals

have been using code and scripts to automate common

and repetitive tasks for many years. What is new is that

virtualized cloud environment makes it possible to

automate everything. Also new is that the cloud drives an

increased impetus to adopt DevOps processes and CI/CD

pipelines, which depend on automation.

You can’t fully implement the Continuous Change

principle without first implementing the Software Defined

principle.

There are many benefits to a Software-Defined approach.

First, humans make mistakes. Relying on manual steps in

deployment or operations is to accept these mistakes as

an inevitable cost. With properly tested automation, these

processes can be repeated day and night with complete

consistency and without error. An additional benefit is

that automation reduced deployment times and frees

valuable staff time for higher-value tasks. Finally, the

automation scripts provide a precise record of the

deployment itself. Like well-commented code, the

infrastructure becomes self-documenting.

PRINCIPLE 6: SOFTWARE-DEFINED PAGE 35

aka.ms/practiceplaybooks

Using the Principle

Automated deployment and management using Azure Resource Manager templates to

implement an Infrastructure as Code approach.

INFRASTRUCTURE AS CODE

A range of tools to implement an Infrastructure as Code

approach to Azure deployment, from both Microsoft and

third parties. These include:

• Azure Resource Manager templates (Microsoft)

• Desire State Configuration (Microsoft)

• Puppet (Puppet Labs)

• Chef (Chef)

• Ansible (Red Hat)

• Terraform (Hashicorp)

Common to any automated deployment is the concept of

idempotence. What does this mean? An idempotent script

or operation has the property that end state is always the

same, regardless of the starting condition. For example,

you might have a script to create a VM with a given name.

If the VM doesn’t exist, it is created. If the VM already

exists, the script shouldn’t create a second one, it should

just update the existing VM to match the settings in the

script. Thus the end result is the same, regardless of the

initial state.

Idempotency is a critical feature of any IaC

implementation. It allows the same scripts to be used for

both initial deployments and updates, and removes the

need for endless ‘if-then’ conditional logic. Idempotency

also makes error handling much simpler, since any

operation can simply be re-tried without having to worry

about any incomplete state. The script is said to be

‘declarative’, in that it declares the ‘goal’ state and let’s the

platform figure out the changes required to get there.

When deploying an application in Azure, your first

concern is to provision the Azure resources and ensure

they are connected correctly. This can be achieved using

Azure Resource Manager templates. Each template

defines a list of resources, including all resource properties

and dependencies.

https://en.wikipedia.org/wiki/Idempotence

PRINCIPLE 6: SOFTWARE-DEFINED PAGE 36

aka.ms/practiceplaybooks

Your second concern is to ensure the correct applications

and code are deployed into those resources. Here, your

approach will depend on the service being used. For

example, Azure App Service can integrate with many

common source code control systems to automatically

retrieve and publish the application. For Azure VMs, you

can run deployment scripts as part of the VM

provisioning. Azure Automation State Configuration uses

the PowerShell Desired State Configuration language to

provide an idempotent scripting language for deploying

server components and custom applications. It can be

used with both Azure VMs and on-premises servers.

Azure Resource Manager Templates

Most important of all these IaC technologies are Azure

Resource Manager templates, which we’ll simply call

templates for convenience. Each template is a text file,

formatted in JSON, that lists a collection of resources to be

deployed.

Templates are a declarative language and can be used

both for new deployments and to update existing

deployments. While the template focuses on resources

and their properties, they can also reference additional

scripts to be run on your VMs during VM provisioning.

Each template can be parameterized. For example, this

enables the same template to be used for development,

staging and production environments, with different

parameter values being used to size each environment

appropriately. These parameters can be specified using a

parameters file, stored alongside the template, consistent

with a fully-automated, Software-Defined approach.

Microsoft provides substantial in-depth documentation

on how to write templates, together with a

comprehensive set of examples in the Azure QuickStart
templates library. For the purposes of illustration, let’s

look at a simple template to deploy a virtual network,

subnet, and network security group.

The structure of a template is as follows:

{

 "$schema":

"https://schema.management.azure.com/schemas/2015-

01-01/deploymentTemplate.json#",

 "contentVersion": "",

 "apiProfile": "",

 "parameters": { },

 "variables": { },

 "functions": [],

 "resources": [],

 "outputs": { }

}

 We will be concerned only with the parameters, variables

and resources sections. The remaining sections are either

boiler-plate text or relate to more advanced templates

outside the scope of this example.

The parameters section is used to define any template

inputs. The value of each parameter must be specified

when the template is deployed.

"parameters":{

 "virtualNetworkName": {

 "type": "string",

 "minLength": 1,

............"maxLength": 20

 "metadata": {

 "description": "The name of the

Virtual Network."

 }

 }

},

Each parameter definition can specify constraints, such as

the min/max length of strings or the min/max value of

integers.

The variables section is internal to your template. It allows

you to define values that you will use later in the template.

Variables allow you to make your template more

readable, and de-duplicate values that appear more than

once in your resource definitions.

"variables": {
 "vnetPrefix": "10.0.0.0/16",
 "subnetName": "hostsubnet",
 "'subnetPrefix'": "10.0.0.0/24",
 "NSGName": "MyNSG",
},

In the resource section you describe the Azure resources

you want to deploy. Each resource definition comprises

some common metadata such as the resource name, type,

and API version, followed by a collection of type-specific

resource properties.

https://docs.microsoft.com/azure/automation/automation-dsc-overview
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-authoring-templates
https://github.com/Azure/azure-quickstart-templates
https://github.com/Azure/azure-quickstart-templates

PRINCIPLE 6: SOFTWARE-DEFINED PAGE 37

aka.ms/practiceplaybooks

"resources": [
 {
 "type": "Microsoft.Network/networkSecurityGroups",
 "name": "[variables('NSGName')]",
 "apiVersion": "2018-08-01",
 "location": "[resourceGroup().location]",
 "tags": {},
 "properties": {
 "securityRules": [
 {
 "name": "RemoteDesktop",
 "properties": {
 "protocol": "TCP",
 "sourcePortRange": "*",
 "destinationPortRange": "3389",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "VirtualNetwork",
 "access": "Allow",
 "priority": 300,
 "direction": "Inbound"
 }
 }
]
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks",
 "name": "[parameters('vnetName')]",
 "location": "[resourceGroup().location]",
 "apiVersion": "2016-03-30",
 "dependsOn": [
 "[variables('NSGName')]"
],
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "[variables('vnetPrefix')]"
]
 },
 "subnets": [
 {
 "name": "[variables('subnetName')]",
 "properties": {
 "addressPrefix": "[variables('subnetPrefix')]",
 "networkSecurityGroup": {
 "id":
"[resourceId('Microsoft.Network/networkSecurityGroups',
variables('NSGName'))]"
 }
 }
 }
]
 }
 }
],

 In the above example, notice how the ‘dependsOn’
declaration is used to ensure the NSG is deployed
before the virtual network.

EVENT HANDLING

We have seen how you can automate resource

deployment using Azure Resource Manager templates

and discussed how VM configuration can be automated

using PowerShell DSC. Another automation scenario is

responding to alerts or other events.

The first step is to detect the event. Events can be

generated by many Azure services. Examples include

Activity Log alerts, metric alerts, log alerts, or other

triggers such as a web request. Azure Event Grid is a fully-

managed service designed to consume events from any

Azure or external service and trigger appropriate actions.

Those actions can be implemented either in your

application, or using a variety of serverless technologies

available in Azure. These include Logic Apps, which

provides rapid, graphical development of process flows

and integration with a wide variety of external service, and

Azure Functions which enables serverless deployment of

fully customize code in a variety of languages.

Further Reading

To learn more about the Azure Resource Manager

template language, see the Azure Resource Manager

template structure and syntax reference documentation.

The Azure quickstart templates provide a wide range of

template examples you can use to get started. The Azure

Resource Manager template reference documentation

provides details on how to describe each resource type in

a template.

The Azure documentation pages provide further

information about Azure Functions, Azure Automation,

Event Grid and Logic Apps.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates
https://azure.microsoft.com/en-us/resources/templates/
https://docs.microsoft.com/azure/templates/
https://docs.microsoft.com/azure/templates/
https://docs.microsoft.com/azure/azure-functions/
https://docs.microsoft.com/azure/automation/automation-intro
https://docs.microsoft.com/azure/event-grid/overview
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview

PRINCIPLE 7: PAY-PER-USE PAGE 38

aka.ms/practiceplaybooks

Principle 7: Pay-per-Use
The cloud changes not only how companies implement their IT projects, but also changes

fundamentally how IT is paid for. Adapting to this new billing model is a key to success.

Traditional IT requires up-front capital expenditure on

hardware, software licenses, and facilities, plus on-going

operational costs for staffing, power, and connectivity.

These are known as ‘CapEx’ and ‘OpEx’ respectively. In the

cloud, CapEx costs are borne by the cloud provider. As an

Azure customer, your Azure bill is based on your metered

resource usage and is typically treated as OpEx.

This shift from up-front to metered billing is a very

fundamental change, with far-reaching implications for

successful cloud adoption. The Pay-per-Use principle

describes how to adapt your cloud usage to optimize your

costs. This requires new skills, new responsibilities, and

cultural change, as we shall now discuss.

Accurately pricing an Azure solution isn’t always easy. The

billing model can be complex, and pricing can vary based

on many variables. The ability to accurately price an Azure

solution, and to identify cost-saving opportunities, are

skills that require both study and experience.

Cost optimization needs to be factored into your

application designs. Architects and developers need to

consider cost alongside other requirements such as

performance, scale or availability. There is an interplay

between each of these requirements, making it more

difficult to retro-fit a cost optimization later without

impacting these other factors. They need to be considered

together at design time—something many architects will

not be used to.

Last, cost optimization requires cultural change.

Organizations need to become cost-aware, with each

team accountable for their Azure costs and with clear

targets and reporting. Cost optimization is not a one-time

task, rather it is an on-going activity, since requirements

and the available Azure features evolve over time. An

optimized application can only be delivered and

maintained, and cloud waste minimized, if cost awareness

is baked into the organizational mindset.

PRINCIPLE 7: PAY-PER-USE PAGE 39

aka.ms/practiceplaybooks

Using the Principle

Learn how to forecast, monitor and optimize your costs to take advantage of Pay-per-Use

cloud billing.

UNDERSTAND AZURE BILLING

Before you can optimize your Azure costs, you need to

understand in detail how you Azure costs are calculated.

How Azure Billing Works

Each Azure resource is billed separately. For example, for a

single virtual machine, there are separate resources for the

machine itself (which determines the CPU and memory

characteristics), the disk, and the network. Each appears as

a separate line item on your Azure bill.

Each resource also has its own billing model, which is

described on the Azure website pricing page for that

resource. Resources are typically billed based on the

length of time they are created for, or how much they are

used, or both. It is important to understand the billing

model for each of the resources in your application.

For example, a virtual machine is charged based on how

long the machine is used for. Network usage is based on

the volume of data using the network. An ExpressRoute

circuit, used for connecting Azure with on-premises

networks, has two billing models to choose between:

either a fixed monthly charge only, or a lower fixed

monthly charge plus a charge for each GB of outbound

data.

Discounts

Azure also offers a variety of discount plans, which can

offer very substantial cost savings. Taking full advantage

of the available discounts is essential to optimizing the

costs of any deployment. Key amongst these discounts are

Azure Reservations and Azure Hybrid Benefit.

Azure Reservations allows you to pre-purchase selected

Azure resources, at a discounted rate. Reserved VM

Instances allow you to pre-purchase Azure virtual

machines, while Reserved Capacity allows you to pre-

purchase Azure SQL Database, Azure SQL Data

Warehouse, and Azure CosmosDB. Reservations are paid

for in advance and used to discount eligible resources

from your monthly bill. This advance payment model can

be useful where an organization is not yet ready to shift

expenditure from CapEx to OpEx for internal reasons.

Azure Hybrid Benefit allows you to use existing Windows

Server and SQL Server licenses to discount the cost of

running corresponding Azure resources. Windows Server

licenses are discounted against Windows VMs, and SQL

Server licenses against Windows VMs running SQL Server

or against Azure SQL Database.

Azure Reservations and Azure Hybrid Benefit can be

combined for even greater savings.

COST FORECASTING

There are several tools available to help you calculate

Azure costs. Some of the most commonly-used tools are

described below. Many third-party cost management

tools also include cost forecasting and optimization

capabilities.

Azure Pricing Calculator

The Azure pricing calculator is the most commonly-used

pricing tool. It allows you to specify each resource used by

your application, together with the resource parameters

that impact on pricing, such as SKU, region, and

applicable discounts. The calculator provides per-resource

pricing, in a currency of your choice.

As an example, let us calculate the cost of a VM with

several data disks, as described in one of the Azure

quickstart templates. According to the template, the

following resources are used:

• Microsoft.Storage/storageAccounts

• Microsoft.Network/publicIPAddresses

• Microsoft.Network/virtualNetworks

• Microsoft.Network/networkInterfaces

• Microsoft.Compute/virtualMachines

The virtual machine also uses managed disks

(Microsoft.Compute/disks), although these are specified

implicitly in the virtual machine properties, rather than as

explicit resources within the template.

https://azure.microsoft.com/reservations/
https://azure.microsoft.com/en-us/pricing/reserved-vm-instances/
https://azure.microsoft.com/en-us/pricing/reserved-vm-instances/
https://azure.microsoft.com/en-us/pricing/reserved-capacity/
https://azure.microsoft.com/en-in/pricing/hybrid-benefit/
https://azure.microsoft.com/pricing/calculator/
https://github.com/Azure/azure-quickstart-templates/tree/master/101-vm-with-standardssd-disk
https://github.com/Azure/azure-quickstart-templates/tree/master/101-vm-with-standardssd-disk

PRINCIPLE 7: PAY-PER-USE PAGE 40

aka.ms/practiceplaybooks

The virtual machine size and data disk type will both

impact the pricing. These values are specified as template

parameters, so a range of values could be used in practice.

Let’s assume the default values defined in the template

are used: Standard_DS3_v2 for the VM SKU and

StandardSSD_LRS for the data disk type. The number and

size of data disks are determined by template variables (5

data disks, each 1024 GB).

These dependencies on parameters, variables, and

implicitly-defined resources illustrate the importance of

properly understanding the template and paying

attention to detail when calculating costs.

To calculate the costs, open the Azure pricing calculator

and add each of the resource types identified.

Note that you can change the name of your price estimate

and provide a name for each resource included. This is

very useful, for example to describe the different tiers of

your application as ‘Web Servers’, ‘Database Servers’

rather than simply ‘Virtual machines’.

It is essential that every pricing calculator field is filled in

correctly, since all fields exposed by the calculator have

the potential to impact the price.

Take care to ensure network bandwidth is specified

correctly. Data transferred across peering connections

between virtual networks is specified within the virtual

network resource. Egress bandwidth (for example, for web

traffic served from a web server) is priced separately, using

the ‘Bandwidth’ type within the calculator, which must be

added to your estimate even though it is not a resource

type within your deployment.

 The pricing calculator lets you save your estimates, and

export them as an Excel spreadsheet. The total price can

be shown in the currency of your choice. Those using

Enterprise Agreement (EA) or Cloud Solution Provider

(CSP) subscriptions can specify their subscription type, so

https://azure.microsoft.com/pricing/calculator/

PRINCIPLE 7: PAY-PER-USE PAGE 41

aka.ms/practiceplaybooks

the pricing calculator applies the correct discounts.

Support plans can also be included.

The price shown above would be the monthly price if you

run this VM 24x7.

Suppose now that this capacity is only required for 40

hours per month. During the remaining hours, a much

smaller F2s VM suffices. In addition, suppose that the data

disk size can be reduced from 1024 to 256 GB.

To estimate this scenario, change the hours for the

existing VM, and add a new F2s VM for the remaining

hours. Only specify the data disks on one of the VMs, to

avoid double-counting.

In this scenario, the total monthly cost is reduced from

$752.12 to $265.60, representing an annual saving of over

$5,800, or 65%. Using hybrid benefit (if eligible) and

reserved instances for the F2s VM could result in further

savings.

Azure Migrate

The Azure Migrate tool helps you assess on-premises

environments and migrate them to Azure. As part of the

migration assessment phase, it provides estimates for

what the on-premises workload will cost to run using

Azure VMs.

This estimate is calculated based on a variety of

parameters, which you can control to fine-tune the

pricing. For example, you specify the VM tier, hours of

operation, and discounts.

The size of VM can be based either on the size of the on-

premises machines, or based on their utilization, using

performance metrics gathered by Azure Migrate. Since

many on-premises servers are heavily under-utilized,

sizing VMs based on utilization can offer substantial

savings.

CSP ARM Pricing Calculator

The CSP ARM Pricing Calculator is an Azure pricing tool

aimed specifically for Azure CSP partners. It takes as input

an Azure Resource Manager template and parameters file,

and provides a pricing calculation based on the resources

PRINCIPLE 7: PAY-PER-USE PAGE 42

aka.ms/practiceplaybooks

defined by those files. The calculation is based on the CSP

rate card, so takes account of any CSP discounts.

The tool is available for free on Github.

RIGHT-SIZING

Right-sizing your deployment footprint means deploying

sufficient resources to meet your needs, while ensuring

you do not unnecessarily over-provision resources and

thus spend more than you have to. Right-sizing applies to

the VM size and type, disk size and type, and the number

of VMs and disks deployed.

Unlike traditional infrastructure, the flexibility of Azure

enables all of these parameters to be updated over time

as your workload needs change. With traditional

infrastructure, hardware is typically over-provisioned to

handle worst-case scenarios, such as failures and an

anticipated future peak demand. This leads to CPU

utilization that is often under 10%. In contrast, the ability

to scale Azure VMs on demand means workloads can

target a CPU utilization of up to 80%. For optimal cost-

savings, workloads should be monitored and scaled up or

down to keep the utilization within this range.

Applications rarely experience a constant load, 24x7. More

usually, demand will vary based on user behavior. The

following diagram shows some typical usage patterns.

Right-sizing enables your application to maintain efficient

utilization regardless of the usage pattern.

In addition, Azure VMs are based on the latest Intel and

AMD processors, on hardware and networks that are

highly tuned for optimal performance. This allows further

optimization by choosing a VM family that offers

sufficient CPU capacity and a suitable CPU/memory ratio.

Azure VMs run on a range of different Intel and AMD

processors, with new SKUs being introduced regularly to

support the latest and most powerful models. To enable a

comparison of CPU capacity across VM families, Microsoft

publishes a table of ‘Azure Compute Unit’ (ACU) values for

each VM family. This measures the relative CPU

performance across VM families, with the A1 SKU

benchmarked as 100 ACU, allowing you to compare

performance.

https://github.com/Microsoft/CSPARMPricingCalculator
https://docs.microsoft.com/azure/virtual-machines/windows/acu
https://docs.microsoft.com/azure/virtual-machines/windows/acu

PRINCIPLE 7: PAY-PER-USE PAGE 43

aka.ms/practiceplaybooks

Choosing the Right VM

Choosing the right VM is an important part of any initial
deployment. Even more important is to treat this
process as a continual cycle, adjusting according to
measured performance and changing demand.

The first step is to choose the workload type. This

determines which VM family to use. Azure supports a wide

range of VM families, designed for different workloads.

The following table illustrates the VM types available

(source):

Use the table to identify the workload type. The table will

then show which VM sizes and types are suitable for that

workload. If you do not know the workload type, start

with the General Purpose type.

Having chosen the VM type, the second step is to choose

the initial VM SKU (family and size) to deploy. This will be

based on the number of CPU cores and how much memory
your workload requires. Within each VM family, the ratio of
CPU to memory is fixed—a larger VM with double the CPUs
will also have double the memory. However, between
different VM families, the ratio of CPU to memory can vary
considerably. This is illustrated in the following diagram:

When selecting a VM size the first question is in most

cases is how much memory is needed, followed by how

much CPU capacity. Understand if these requirements are

sensitive to the number of concurrent users, since using a

larger number of smaller VMs is usually preferable to a

small number of large VMs, since it offers better scalability

and resiliency.

Bear in mind your target CPU and memory utilization, and

avoid the temptation to over-provision. A better rule of

thumb is ‘less is best’. If the VM turns out to be to small

you can always redeploy with more capacity.

Measurements from proof-of-concept deployments or

on-premises environments can help inform your VM

choice. However, bear in mind that Azure CPUs will be

different from those in your own datacenter. To help you

make valid comparisons, Microsoft publishes compute

https://docs.microsoft.com/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/azure/virtual-machines/windows/compute-benchmark-scores

PRINCIPLE 7: PAY-PER-USE PAGE 44

aka.ms/practiceplaybooks

benchmark scores for each Azure VM SKU, computed by

running SPECint 2006 on Windows Server:

Also important is to remember that when running VM's in

a on-premise environment, the hypervisor may be

configured to use only a fraction of a physical CPU core

for each virtual core. Ratios of 1:4 are not uncommon,

whereas in Azure each physical core supports only 1 or in

some cases 2 virtual cores (see the earlier table showing

ACU values). A workload that previously required 4 vCores

on-premises may therefore run in a single vCore in Azure,

since both represent a single physical core. Assessing on-

premises environments using Azure Migrate will take

these factors into account.

The next step is to consider the VM storage. This may

influence the VM choice, since the choice of VM SKU will

determine the size of the temporary disk available, the

number of data disks supported, and the maximum

supported disk throughput and IOPS. In addition, only

certain VM SKUs (denoted by an ‘s’ suffix) support

Premium SSD drives, and only certain VM SKUs support

premium storage disk caching for increased performance.

Similarly, your networking requirements will also influence

your VM choice. The number of network interfaces and

the network capacity of the VM vary according to the VM

family and size.

The following table illustrates the storage and network

limits for the DS_v3 VM family (link). Similar tables are

available for each VM family.

Having chosen your VM SKU, you will then need to

consider the storage requirements of the VM. Each VM

comes with an OS disk and temporary disk. You have full

control over additional data disks.

For each disk, you will need to specify the type. There are

4 types available as described in the following table (link).

Pricing varies according to disk type. As with VMs, so be

sure to choose a type that meets your needs without

being tempted to over-provision.

The choice of disk type and size will determine the

maximum disk throughput and IOPS. The following table

https://docs.microsoft.com/azure/virtual-machines/windows/compute-benchmark-scores
https://www.spec.org/cpu2006/results/rint2006.html
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general#dsv3-series-1
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/disks-types#disk-comparison

PRINCIPLE 7: PAY-PER-USE PAGE 45

aka.ms/practiceplaybooks

illustrates how throughput and IOPS vary with disk size for

Premium SSD disks.

Remember that the maximum disk throughput and IOPS

is determined by both the per-disk limits and the per-VM

limits, and take both sets of limits into account.

Monitoring and Updating VM Size

Ongoing monitoring is essential to validate the VM size

chosen, and update as necessary to maintain a cost-

efficient utilization.

A first step is to review Azure Advisor, to check for

alternative VM size recommendations. These may appear

under either the ‘Performance’ or ‘Cost’ categories.

To understand the VM performance, you will need to

review the VM performance metrics. Basic metrics can be

seen on the VM Overview blade in the Azure portal:

The default metrics are gathered from the Azure

hypervisor. For deeper analysis, you can enable additional

performance counters from the VM Diagnostic Settings

blade. These are gathered by the VM Agent running on

the VM.

PRINCIPLE 7: PAY-PER-USE PAGE 46

aka.ms/practiceplaybooks

You can review the VM metrics in Azure Monitor. First

select the subscription, resource group and VM, then

select the counters to view. This data can also be exported

for offline analysis.

Based on these metrics, you can determine if the VM is

optimized for the current workload or whether it should

be changed to offer better utilization and lower cost.

Re-sizing a VM requires the VM to be rebooted. For a

single-VM deployment, this will result in service

downtime. The time and effort to re-size will vary,

depending on whether the new VM size is available in the

same hardware cluster as the existing VM—see this blog

post for more information.

For load-balanced workloads, re-sizing VMs can be

achieved without downtime by adding new VMs to the

load balancer as old VMs are removed. The Azure Load

Balancer does not current support connection draining

(waiting for existing connections to close before removing

the VM from the load balancer). This means removing the

existing VM will terminate existing sessions.

A workaround is to use the load balancer health checks to

enable connection draining. Add a custom health check

page to your application, such as healthcheck.html, and

configure this page in your load balancer health probe.

Before removing the VM from the load balancer, rename

the health check page (for example, to _healthcheck.html)

on the affected VM. This will result in the load balancer

health probe receiving an HTTP 404 error, causing the

load balancer to direct new connections to other VMs.

Wait for any existing connections to close, then remove

the VM from the backend pool. With this approach, VMs

can be resized without user impact.

COST MANAGEMENT

Azure Cost Management is an Azure service designed to

help you understand and manage your Azure costs. It

supports cost analysis, forecasting, budgets, and alerting.

It also provides cost optimization recommendations.

Visibility

Azure Cost Management provides a view into the costs of

the Azure environment. These reports can be analyzed

and the subscription or resource group level. They can

also be aggregated across subscriptions or filtered using

resource tags to create a wide range of views.

Tracking usage and costs trends is provided by the Cost

Analysis area of the tool, which provides a report of costs

against time. When first used, the report will have no

groups or filtered applied, so this shows the all-up cost for

the entire Azure environment. The report can be filtered

by the various Azure services consumed by this

subscription or by groups that you can add. Some

examples of groups are departments or applications that

you have identified using Azure Tags.

Creating a cost-conscious culture requires visibility and

accountability to be pushed down to the engineers

responsible for developing and operating the service.

Access controls ensure that teams can access the cost

management data relevant to them.

https://azure.microsoft.com/blog/resize-virtual-machines/
https://azure.microsoft.com/blog/resize-virtual-machines/

PRINCIPLE 7: PAY-PER-USE PAGE 47

aka.ms/practiceplaybooks

Monitoring and Alerting

Monitoring usage and spending is critically important for

cloud infrastructures because organizations pay for the

resources they consume over time. When usage exceeds

agreement thresholds, unexpected cost overages can

quickly occur.

Azure Cost Management allows you to alert stakeholders

automatically to spending anomalies and overspending

risks. You can define alerts based on budgets and

thresholds, providing early warning of unexpected

expenditure allowing you to take early corrective action.

CSP Cost Management

Cost Management in Azure was originally provided via the

standalone Cloudyn service, which Microsoft acquired in

2017. This service is gradually being replaced by the Azure

Cost Management service.

At this time, Azure Cost Management does not support

CSP subscriptions, so CSP Partners should continue to use

Cloudyn for their cost management scenarios. New

Cloudyn registrations are limited to Microsoft CSP Partner

administrators only. Existing Cloudyn customers can

continue using Cloudyn for a limited period. A roadmap

of future changes will enable CSP partners to access Azure

Cost Management.

FURTHER READING

The prices of Azure resources vary per region. The third-

party tool https://azureprice.net provides cross-region

comparisons for each VM SKU. This enables you to choose

the most cost-effective region for your workload—

especially valuable for workloads without geographical

constraints or latency requirements.

Microsoft Azure Support publishes technical guidance on

monitoring and troubleshooting performance
bottlenecks for Azure VMs.

https://azure.microsoft.com/blog/azure-cost-management-updates-july-2019/
https://azure.microsoft.com/blog/azure-cost-management-updates-july-2019/
https://azureprice.net/
https://support.microsoft.com/help/3150851/generic-performance-troubleshooting-for-azure-virtual-machine-running
https://support.microsoft.com/help/3150851/generic-performance-troubleshooting-for-azure-virtual-machine-running

PRINCIPLE 8: SCALABLE PAGE 48

aka.ms/practiceplaybooks

Principle 8: Scalable
Leverage the agility of the cloud with scalable applications that maximize resiliency, flexibility

and cost-efficiency.

Azure provides almost unlimited scale for storage,

compute, network capacity and many platform services. In

addition, the ability to dynamically scale the deployment

footprint of each application removes the need for large-

scale up-front investment and allows you to scale

reactively rather than trying to forecast future

requirements.

This provides an unprecedented opportunity. New

business can start small and local, and grow into large-

scale, global applications, without requiring global

engineering teams and off-shore facilities.

To take advantage of this opportunity, your application

must be architected with scalability in mind. For example,

it is desirable to use ‘stateless’ VMs which offload

application state to a separate storage services, such as

Azure SQL Database. This makes it easier to ‘scale in and

out’ by adding and removing VMs.

Where this is not possible, you will need to ‘scale up and

down’ by replacing existing VMs with larger or smaller

SKUs. This makes it more difficult to avoid application

downtime when scaling, since it requires the existing

servers to be rebooted. It also introduces inherent limits,

since it is not possible to scale up indefinitely.

The ability to scale is closely related to the ‘Pay-per-Use’

principle, since one of the motivations is to maintain an

optimized deployment and avoid cloud waste. But this is

not the only motivation. The Scalability principle is also

motivated by the ability to grow your business over time

and handle unexpected spikes in demand without

degrading the service.

Just as with IaaS VMs, most PaaS services support varying

the service tier and/or number of instances to enable

scaling. This includes Azure App Service, Azure SQL

Database, Application Gateway, and more. In some cases,

such as Azure Firewall and Azure Load Balancer, scaling is

handled transparently by the platform.

PRINCIPLE 8: SCALABLE PAGE 49

aka.ms/practiceplaybooks

Using the Principle

Use built-in features and custom scripts to automate scale changes and minimize the need

for manual interventions.

Scaling can be manual, but where possible should be

automated. Some services, such as App Service and VM

Scale Sets, support autoscaling natively as part of the

platform. In other cases, you can implement automated

scaling using other platform tools, such as Azure Monitor

and Azure Automation.

As an example, consider resizing a VM automatically

based on CPU utilization. A similar approach can be used

for autoscaling based on an alternative trigger, such as a

timer. This guide is based on this example.

To begin, create an Azure Automation account and

import the ‘Azure Automation Vertical Scale’ runbooks

from the runbook gallery.

Open the runbook, click ‘Edit’, and publish the runbook.

Then add a webhook to the runbook so it can be

triggered from an alert rule. Next, identify the VM to scale

and add an alert from the virtual machine settings.

Choose ‘Percentage CPU’ as the alert metric and define

the alert thresholds. For the alert action, create an action

group that triggers the webhook defined earlier.

Elevated CPU will now trigger the alert, which will call the

webhook to start the runbook. This runbook will then

scale up the VM. The CPUSTRES tool can be used to

simulate high CPU load for testing.

Further Reading

The Azure Monitor Autoscale documentation explains

how Azure Monitor autoscale rules can be used to

implement autoscaling of VM Scale Sets and App Service

deployments. It also explains how autoscale rules can be

used trigger custom actions vial webhooks.

An example of autoscaling the number of VMs, without
using a VM Scale Set, is given in this TechNet article on
autoscaling for Remote Desktop Services hosts.

https://docs.microsoft.com/azure/virtual-machines/linux/vertical-scaling-automation
https://docs.microsoft.com/sysinternals/downloads/cpustres
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-autoscale
https://gallery.technet.microsoft.com/scriptcenter/Automatic-Scaling-of-9b4f5e76
https://gallery.technet.microsoft.com/scriptcenter/Automatic-Scaling-of-9b4f5e76

SUMMARY PAGE 50

aka.ms/practiceplaybooks

Summary
Thank you for taking the time to read this playbook. We hope it has given you a valuable

insight into best practices for Azure adoption that will enable you to deliver successful, cloud-

optimized services.

In this playbook we presented what we have found to be 8 principles of successful cloud adoption. We believe that by

applying these principles as you develop your Azure practice, you will avoid many pitfalls and will be better positioned for

success.

The cloud changes every aspect of IT, and so as experienced IT professionals we must challenge our experience and

assumptions, and be willing to learn and adopt new ways of working. The principles described in this playbook can help you

on this learning journey.

These cloud principles are not intended as a recipe, or rigid formula. They are just a starting point that illustrates how to think

about how to best develop and operate cloud-based services.

This is not an exact science but an art. The cloud is constantly evolving and changing so the principles will also evolve. The

way you apply the principles and learn from your experiences to develop your own unique approach to the cloud will be your

IP and your differentiator.

We hope we inspired you to take another look at the cloud and make it yours. Use these principles as a starting point, and go

on to create your own cloud principles, so you can become the master of the cloud.

Jan & Herman

