-
Notifications
You must be signed in to change notification settings - Fork 206
/
Copy pathcircuit.rs
492 lines (446 loc) · 16.1 KB
/
circuit.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//! There are two Verification Circuits. The primary and the secondary.
//! Each of them is over a curve in a 2-cycle of curves.
//! We have two running instances. Each circuit takes as input 2 hashes: one for each
//! of the running instances. Each of these hashes is H(params = H(shape, ck), i, z0, zi, U).
//! Each circuit folds the last invocation of the other into the running instance
use crate::{
constants::{NUM_FE_WITHOUT_IO_FOR_CRHF, NUM_HASH_BITS},
gadgets::{
ecc::AllocatedPoint,
r1cs::{AllocatedR1CSInstance, AllocatedRelaxedR1CSInstance},
utils::{
alloc_num_equals, alloc_scalar_as_base, alloc_zero, conditionally_select_vec, le_bits_to_num,
},
},
r1cs::{R1CSInstance, RelaxedR1CSInstance},
traits::{
circuit::StepCircuit, commitment::CommitmentTrait, Group, ROCircuitTrait, ROConstantsCircuit,
},
Commitment,
};
use bellpepper::gadgets::Assignment;
use bellpepper_core::{
boolean::{AllocatedBit, Boolean},
num::AllocatedNum,
ConstraintSystem, SynthesisError,
};
use ff::Field;
use serde::{Deserialize, Serialize};
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct NovaAugmentedCircuitParams {
limb_width: usize,
n_limbs: usize,
is_primary_circuit: bool, // A boolean indicating if this is the primary circuit
}
impl NovaAugmentedCircuitParams {
pub const fn new(limb_width: usize, n_limbs: usize, is_primary_circuit: bool) -> Self {
Self {
limb_width,
n_limbs,
is_primary_circuit,
}
}
}
#[derive(Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct NovaAugmentedCircuitInputs<G: Group> {
params: G::Scalar,
i: G::Base,
z0: Vec<G::Base>,
zi: Option<Vec<G::Base>>,
U: Option<RelaxedR1CSInstance<G>>,
u: Option<R1CSInstance<G>>,
T: Option<Commitment<G>>,
}
impl<G: Group> NovaAugmentedCircuitInputs<G> {
/// Create new inputs/witness for the verification circuit
#[allow(clippy::too_many_arguments)]
pub fn new(
params: G::Scalar,
i: G::Base,
z0: Vec<G::Base>,
zi: Option<Vec<G::Base>>,
U: Option<RelaxedR1CSInstance<G>>,
u: Option<R1CSInstance<G>>,
T: Option<Commitment<G>>,
) -> Self {
Self {
params,
i,
z0,
zi,
U,
u,
T,
}
}
}
/// The augmented circuit F' in Nova that includes a step circuit F
/// and the circuit for the verifier in Nova's non-interactive folding scheme
pub struct NovaAugmentedCircuit<'a, G: Group, SC: StepCircuit<G::Base>> {
params: &'a NovaAugmentedCircuitParams,
ro_consts: ROConstantsCircuit<G>,
inputs: Option<NovaAugmentedCircuitInputs<G>>,
step_circuit: &'a SC, // The function that is applied for each step
}
impl<'a, G: Group, SC: StepCircuit<G::Base>> NovaAugmentedCircuit<'a, G, SC> {
/// Create a new verification circuit for the input relaxed r1cs instances
pub const fn new(
params: &'a NovaAugmentedCircuitParams,
inputs: Option<NovaAugmentedCircuitInputs<G>>,
step_circuit: &'a SC,
ro_consts: ROConstantsCircuit<G>,
) -> Self {
Self {
params,
inputs,
step_circuit,
ro_consts,
}
}
/// Allocate all witnesses and return
fn alloc_witness<CS: ConstraintSystem<<G as Group>::Base>>(
&self,
mut cs: CS,
arity: usize,
) -> Result<
(
AllocatedNum<G::Base>,
AllocatedNum<G::Base>,
Vec<AllocatedNum<G::Base>>,
Vec<AllocatedNum<G::Base>>,
AllocatedRelaxedR1CSInstance<G>,
AllocatedR1CSInstance<G>,
AllocatedPoint<G>,
),
SynthesisError,
> {
// Allocate the params
let params = alloc_scalar_as_base::<G, _>(
cs.namespace(|| "params"),
self.inputs.get().map_or(None, |inputs| Some(inputs.params)),
)?;
// Allocate i
let i = AllocatedNum::alloc(cs.namespace(|| "i"), || Ok(self.inputs.get()?.i))?;
// Allocate z0
let z_0 = (0..arity)
.map(|i| {
AllocatedNum::alloc(cs.namespace(|| format!("z0_{i}")), || {
Ok(self.inputs.get()?.z0[i])
})
})
.collect::<Result<Vec<AllocatedNum<G::Base>>, _>>()?;
// Allocate zi. If inputs.zi is not provided (base case) allocate default value 0
let zero = vec![G::Base::ZERO; arity];
let z_i = (0..arity)
.map(|i| {
AllocatedNum::alloc(cs.namespace(|| format!("zi_{i}")), || {
Ok(self.inputs.get()?.zi.as_ref().unwrap_or(&zero)[i])
})
})
.collect::<Result<Vec<AllocatedNum<G::Base>>, _>>()?;
// Allocate the running instance
let U: AllocatedRelaxedR1CSInstance<G> = AllocatedRelaxedR1CSInstance::alloc(
cs.namespace(|| "Allocate U"),
self.inputs.get().as_ref().map_or(None, |inputs| {
inputs.U.get().as_ref().map_or(None, |U| Some(U))
}),
self.params.limb_width,
self.params.n_limbs,
)?;
// Allocate the instance to be folded in
let u = AllocatedR1CSInstance::alloc(
cs.namespace(|| "allocate instance u to fold"),
self.inputs.get().as_ref().map_or(None, |inputs| {
inputs.u.get().as_ref().map_or(None, |u| Some(u))
}),
)?;
// Allocate T
let T = AllocatedPoint::alloc(
cs.namespace(|| "allocate T"),
self.inputs.get().map_or(None, |inputs| {
inputs.T.get().map_or(None, |T| Some(T.to_coordinates()))
}),
)?;
Ok((params, i, z_0, z_i, U, u, T))
}
/// Synthesizes base case and returns the new relaxed `R1CSInstance`
fn synthesize_base_case<CS: ConstraintSystem<<G as Group>::Base>>(
&self,
mut cs: CS,
u: AllocatedR1CSInstance<G>,
) -> Result<AllocatedRelaxedR1CSInstance<G>, SynthesisError> {
let U_default: AllocatedRelaxedR1CSInstance<G> = if self.params.is_primary_circuit {
// The primary circuit just returns the default R1CS instance
AllocatedRelaxedR1CSInstance::default(
cs.namespace(|| "Allocate U_default"),
self.params.limb_width,
self.params.n_limbs,
)?
} else {
// The secondary circuit returns the incoming R1CS instance
AllocatedRelaxedR1CSInstance::from_r1cs_instance(
cs.namespace(|| "Allocate U_default"),
u,
self.params.limb_width,
self.params.n_limbs,
)?
};
Ok(U_default)
}
/// Synthesizes non base case and returns the new relaxed `R1CSInstance`
/// And a boolean indicating if all checks pass
#[allow(clippy::too_many_arguments)]
fn synthesize_non_base_case<CS: ConstraintSystem<<G as Group>::Base>>(
&self,
mut cs: CS,
params: &AllocatedNum<G::Base>,
i: &AllocatedNum<G::Base>,
z_0: &[AllocatedNum<G::Base>],
z_i: &[AllocatedNum<G::Base>],
U: &AllocatedRelaxedR1CSInstance<G>,
u: &AllocatedR1CSInstance<G>,
T: &AllocatedPoint<G>,
arity: usize,
) -> Result<(AllocatedRelaxedR1CSInstance<G>, AllocatedBit), SynthesisError> {
// Check that u.x[0] = Hash(params, U, i, z0, zi)
let mut ro = G::ROCircuit::new(
self.ro_consts.clone(),
NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * arity,
);
ro.absorb(params);
ro.absorb(i);
for e in z_0 {
ro.absorb(e);
}
for e in z_i {
ro.absorb(e);
}
U.absorb_in_ro(cs.namespace(|| "absorb U"), &mut ro)?;
let hash_bits = ro.squeeze(cs.namespace(|| "Input hash"), NUM_HASH_BITS)?;
let hash = le_bits_to_num(cs.namespace(|| "bits to hash"), &hash_bits)?;
let check_pass = alloc_num_equals(
cs.namespace(|| "check consistency of u.X[0] with H(params, U, i, z0, zi)"),
&u.X0,
&hash,
)?;
// Run NIFS Verifier
let U_fold = U.fold_with_r1cs(
cs.namespace(|| "compute fold of U and u"),
params,
u,
T,
self.ro_consts.clone(),
self.params.limb_width,
self.params.n_limbs,
)?;
Ok((U_fold, check_pass))
}
}
impl<'a, G: Group, SC: StepCircuit<G::Base>> NovaAugmentedCircuit<'a, G, SC> {
/// synthesize circuit giving constraint system
pub fn synthesize<CS: ConstraintSystem<<G as Group>::Base>>(
self,
cs: &mut CS,
) -> Result<Vec<AllocatedNum<G::Base>>, SynthesisError> {
let arity = self.step_circuit.arity();
// Allocate all witnesses
let (params, i, z_0, z_i, U, u, T) =
self.alloc_witness(cs.namespace(|| "allocate the circuit witness"), arity)?;
// Compute variable indicating if this is the base case
let zero = alloc_zero(cs.namespace(|| "zero"))?;
let is_base_case = alloc_num_equals(cs.namespace(|| "Check if base case"), &i.clone(), &zero)?;
// Synthesize the circuit for the base case and get the new running instance
let Unew_base = self.synthesize_base_case(cs.namespace(|| "base case"), u.clone())?;
// Synthesize the circuit for the non-base case and get the new running
// instance along with a boolean indicating if all checks have passed
let (Unew_non_base, check_non_base_pass) = self.synthesize_non_base_case(
cs.namespace(|| "synthesize non base case"),
¶ms,
&i,
&z_0,
&z_i,
&U,
&u,
&T,
arity,
)?;
// Either check_non_base_pass=true or we are in the base case
let should_be_false = AllocatedBit::nor(
cs.namespace(|| "check_non_base_pass nor base_case"),
&check_non_base_pass,
&is_base_case,
)?;
cs.enforce(
|| "check_non_base_pass nor base_case = false",
|lc| lc + should_be_false.get_variable(),
|lc| lc + CS::one(),
|lc| lc,
);
// Compute the U_new
let Unew = Unew_base.conditionally_select(
cs.namespace(|| "compute U_new"),
&Unew_non_base,
&Boolean::from(is_base_case.clone()),
)?;
// Compute i + 1
let i_new = AllocatedNum::alloc(cs.namespace(|| "i + 1"), || {
Ok(*i.get_value().get()? + G::Base::ONE)
})?;
cs.enforce(
|| "check i + 1",
|lc| lc,
|lc| lc,
|lc| lc + i_new.get_variable() - CS::one() - i.get_variable(),
);
// Compute z_{i+1}
let z_input = conditionally_select_vec(
cs.namespace(|| "select input to F"),
&z_0,
&z_i,
&Boolean::from(is_base_case),
)?;
let z_next = self
.step_circuit
.synthesize(&mut cs.namespace(|| "F"), &z_input)?;
if z_next.len() != arity {
return Err(SynthesisError::IncompatibleLengthVector(
"z_next".to_string(),
));
}
// Compute the new hash H(params, Unew, i+1, z0, z_{i+1})
let mut ro = G::ROCircuit::new(self.ro_consts, NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * arity);
ro.absorb(¶ms);
ro.absorb(&i_new);
for e in &z_0 {
ro.absorb(e);
}
for e in &z_next {
ro.absorb(e);
}
Unew.absorb_in_ro(cs.namespace(|| "absorb U_new"), &mut ro)?;
let hash_bits = ro.squeeze(cs.namespace(|| "output hash bits"), NUM_HASH_BITS)?;
let hash = le_bits_to_num(cs.namespace(|| "convert hash to num"), &hash_bits)?;
// Outputs the computed hash and u.X[1] that corresponds to the hash of the other circuit
u.X1
.inputize(cs.namespace(|| "Output unmodified hash of the other circuit"))?;
hash.inputize(cs.namespace(|| "output new hash of this circuit"))?;
Ok(z_next)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::bellpepper::{solver::SatisfyingAssignment, test_shape_cs::TestShapeCS};
type PastaG1 = pasta_curves::pallas::Point;
type PastaG2 = pasta_curves::vesta::Point;
use crate::constants::{BN_LIMB_WIDTH, BN_N_LIMBS};
use crate::provider;
use crate::{
bellpepper::r1cs::{NovaShape, NovaWitness},
gadgets::utils::scalar_as_base,
provider::poseidon::PoseidonConstantsCircuit,
traits::circuit::TrivialCircuit,
};
// In the following we use 1 to refer to the primary, and 2 to refer to the secondary circuit
fn test_recursive_circuit_with<G1, G2>(
primary_params: &NovaAugmentedCircuitParams,
secondary_params: &NovaAugmentedCircuitParams,
ro_consts1: ROConstantsCircuit<G2>,
ro_consts2: ROConstantsCircuit<G1>,
num_constraints_primary: usize,
num_constraints_secondary: usize,
) where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
{
let tc1 = TrivialCircuit::default();
// Initialize the shape and ck for the primary
let circuit1: NovaAugmentedCircuit<'_, G2, TrivialCircuit<<G2 as Group>::Base>> =
NovaAugmentedCircuit::new(primary_params, None, &tc1, ro_consts1.clone());
let mut cs: TestShapeCS<G1> = TestShapeCS::new();
let _ = circuit1.synthesize(&mut cs);
let (shape1, ck1) = cs.r1cs_shape();
assert_eq!(cs.num_constraints(), num_constraints_primary);
let tc2 = TrivialCircuit::default();
// Initialize the shape and ck for the secondary
let circuit2: NovaAugmentedCircuit<'_, G1, TrivialCircuit<<G1 as Group>::Base>> =
NovaAugmentedCircuit::new(secondary_params, None, &tc2, ro_consts2.clone());
let mut cs: TestShapeCS<G2> = TestShapeCS::new();
let _ = circuit2.synthesize(&mut cs);
let (shape2, ck2) = cs.r1cs_shape();
assert_eq!(cs.num_constraints(), num_constraints_secondary);
// Execute the base case for the primary
let zero1 = <<G2 as Group>::Base as Field>::ZERO;
let mut cs1: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs1: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
scalar_as_base::<G1>(zero1), // pass zero for testing
zero1,
vec![zero1],
None,
None,
None,
None,
);
let circuit1: NovaAugmentedCircuit<'_, G2, TrivialCircuit<<G2 as Group>::Base>> =
NovaAugmentedCircuit::new(primary_params, Some(inputs1), &tc1, ro_consts1);
let _ = circuit1.synthesize(&mut cs1);
let (inst1, witness1) = cs1.r1cs_instance_and_witness(&shape1, &ck1).unwrap();
// Make sure that this is satisfiable
assert!(shape1.is_sat(&ck1, &inst1, &witness1).is_ok());
// Execute the base case for the secondary
let zero2 = <<G1 as Group>::Base as Field>::ZERO;
let mut cs2: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs2: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
scalar_as_base::<G2>(zero2), // pass zero for testing
zero2,
vec![zero2],
None,
None,
Some(inst1),
None,
);
let circuit2: NovaAugmentedCircuit<'_, G1, TrivialCircuit<<G1 as Group>::Base>> =
NovaAugmentedCircuit::new(secondary_params, Some(inputs2), &tc2, ro_consts2);
let _ = circuit2.synthesize(&mut cs2);
let (inst2, witness2) = cs2.r1cs_instance_and_witness(&shape2, &ck2).unwrap();
// Make sure that it is satisfiable
assert!(shape2.is_sat(&ck2, &inst2, &witness2).is_ok());
}
#[test]
fn test_recursive_circuit_pasta() {
let params1 = NovaAugmentedCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, true);
let params2 = NovaAugmentedCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, false);
let ro_consts1: ROConstantsCircuit<PastaG2> = PoseidonConstantsCircuit::default();
let ro_consts2: ROConstantsCircuit<PastaG1> = PoseidonConstantsCircuit::default();
test_recursive_circuit_with::<PastaG1, PastaG2>(
¶ms1, ¶ms2, ro_consts1, ro_consts2, 9815, 10347,
);
}
#[test]
fn test_recursive_circuit_grumpkin() {
let params1 = NovaAugmentedCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, true);
let params2 = NovaAugmentedCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, false);
let ro_consts1: ROConstantsCircuit<provider::bn256_grumpkin::grumpkin::Point> =
PoseidonConstantsCircuit::default();
let ro_consts2: ROConstantsCircuit<provider::bn256_grumpkin::bn256::Point> =
PoseidonConstantsCircuit::default();
test_recursive_circuit_with::<
provider::bn256_grumpkin::bn256::Point,
provider::bn256_grumpkin::grumpkin::Point,
>(¶ms1, ¶ms2, ro_consts1, ro_consts2, 9983, 10536);
}
#[test]
fn test_recursive_circuit_secp() {
let params1 = NovaAugmentedCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, true);
let params2 = NovaAugmentedCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, false);
let ro_consts1: ROConstantsCircuit<provider::secp_secq::secq256k1::Point> =
PoseidonConstantsCircuit::default();
let ro_consts2: ROConstantsCircuit<provider::secp_secq::secp256k1::Point> =
PoseidonConstantsCircuit::default();
test_recursive_circuit_with::<
provider::secp_secq::secp256k1::Point,
provider::secp_secq::secq256k1::Point,
>(¶ms1, ¶ms2, ro_consts1, ro_consts2, 10262, 10959);
}
}