-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathget_initial_embeddings.py
231 lines (208 loc) · 8.85 KB
/
get_initial_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import json
import argparse
import os
from time import sleep
import numpy as np
import tiktoken
import openai
from tqdm import tqdm
import threading
from typing import List, Dict, Optional
used_tokens_in_one_minute = 0
this_file_dir = os.path.dirname(os.path.abspath(__file__))
class TokenCounterResetter(threading.Thread):
def __init__(self):
super().__init__()
self._kill = threading.Event()
def run(self):
while True:
is_killed = self._kill.wait(60)
if is_killed:
break
global used_tokens_in_one_minute
used_tokens_in_one_minute = 0
def kill(self):
self._kill.set()
class Embedder:
def __init__(self, model_name, **kwargs) -> None:
if model_name == 'ada_002':
self.model = "text-embedding-ada-002"
else:
raise NotImplementedError("Model not supported")
self.use_azure = False
self.azure_config = None
if "use_azure" in kwargs:
self.use_azure = kwargs["use_azure"]
if self.use_azure:
assert "azure_config" in kwargs
self.azure_config = json.load(open(kwargs["azure_config"]))
self.openai_client = self.setup_api()
if "token_per_minute" in kwargs:
self.token_per_minute = kwargs["token_per_minute"]
else:
self.token_per_minute = 10000
self.tokenizer = tiktoken.get_encoding("cl100k_base")
if "max_prompt_size" in kwargs:
self.max_prompt_size = kwargs["max_prompt_size"]
else:
self.max_prompt_size = 8191
def setup_api(self, num_trials=3):
if self.use_azure:
assert self.azure_config is not None, "Azure config is not provided"
config = self.azure_config
openai_client = openai.AzureOpenAI(
azure_endpoint=config["API_BASE"],
api_version=config["API_VERSION"],
api_key=config["API_KEY"],
timeout=120,
max_retries=num_trials
)
else:
if "OPENAI_API_KEY" not in os.environ:
raise ValueError("OPENAI_API_KEY is not set")
openai_client = openai.OpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
timeout=120,
max_retries=num_trials
)
return openai_client
def get_batch_embeddings(self, text_list):
while True:
try:
response = self.openai_client.embeddings.create(
input=text_list,
model="text-embedding-ada-002"
)
break
except Exception as e:
print(e)
sleep(1)
continue
embeddings = [d.embedding for d in response.data]
return embeddings, response.usage.total_tokens
def embed(
self,
texts: List[str],
existing_embeddings: Optional[Dict[str, List[float]]] = {}
) -> Dict[str, List[float]]:
prepared_inputs = []
for t in texts:
if t in existing_embeddings:
continue
tokens = self.tokenizer.encode(t)[:self.max_prompt_size]
input_text = self.tokenizer.decode(tokens)
prepared_inputs.append((t, input_text, len(tokens)))
batches = []
batch = []
running_tokens = 0
for pinp in prepared_inputs:
if running_tokens + pinp[2] > self.token_per_minute:
batches.append(batch)
batch = []
running_tokens = 0
batch.append(pinp)
running_tokens += pinp[2]
if len(batch) > 0:
batches.append(batch)
bar = tqdm(batches, desc="Used tokens in last one minute: %5d" % 0)
for b in bar:
original_texts = [x[0] for x in b]
input_texts = [x[1] for x in b]
batch_embeddings, tokens_count = self.get_batch_embeddings(input_texts)
global used_tokens_in_one_minute
used_tokens_in_one_minute += tokens_count
for oi, be in zip(original_texts, batch_embeddings):
existing_embeddings[oi] = be
sleep_counter = 0
while used_tokens_in_one_minute != 0:
sleep_counter += 1
bar.set_description(
"Used tokens in last one minute: %5d. Sleeping for %s seconds" % (used_tokens_in_one_minute, sleep_counter)
)
sleep(1)
return existing_embeddings
def gather_unique_code_from_ranker_data(rd_file):
lines = open(rd_file).readlines()
all_codes = set()
for l in lines:
d = json.loads(l)
all_codes.add(d["code"])
for p in d["positives"]:
all_codes.add(p["code"])
for n in d["negatives"]:
all_codes.add(n["code"])
return all_codes
def gather_all_inputs():
all_inputs = set()
ranker_data_dir = os.path.join(this_file_dir, 'ranker_data')
assert os.path.exists(ranker_data_dir), "ranker_data directory does not exist"
num_folds = 5
for i in tqdm(range(num_folds), desc="Gathering inputs from ranker data"):
fold_dir = os.path.join(ranker_data_dir, f"fold_{i}")
assert os.path.exists(fold_dir), f"fold_{i} does not exist, please unzip ranker_data/data.zip file"
all_inputs.update(gather_unique_code_from_ranker_data(os.path.join(fold_dir, "train.jsonl")))
all_inputs.update(gather_unique_code_from_ranker_data(os.path.join(fold_dir, "test.jsonl")))
all_inputs.update(gather_unique_code_from_ranker_data(os.path.join(fold_dir, "valid.jsonl")))
problem_folder = os.path.join(this_file_dir, 'problems/in_scope')
problem_files = [os.path.join(problem_folder, f) for f in os.listdir(problem_folder) if f.endswith('.sl')]
for pf in tqdm(problem_files, desc="Gathering inputs from in_scope problems"):
all_inputs.add(open(pf).read())
generated_solution_directory = os.path.join(this_file_dir, "llm-genrated-solutions")
solution_folders = [
os.path.join(generated_solution_directory, f, "details")
for f in os.listdir(generated_solution_directory)
if os.path.isdir(os.path.join(generated_solution_directory, f))
]
for sf in tqdm(solution_folders, desc="Gathering inputs from LLM generated solutions"):
for f in os.listdir(sf):
if f.endswith(".json"):
invariants = json.load(open(os.path.join(sf, f)))["generated_invariants"]
for i in invariants:
all_inputs.add(i["inv"])
return list(all_inputs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_name', '-m', type=str, choices=['ada_002'],
default='ada_002', help='Name of the OpenAI embedding Model Name'
)
parser.add_argument(
'--use_azure', '-a', action='store_true',
help='Use Azure API. If Azure API is used, the following arguments are required: azure_config'
)
parser.add_argument(
'--azure_config', '-c', type=str,
help='Azure Config file in json format. The json should contain the following keys: '
'API_BASE: Base URL of the hosted model, '
'API_VERSION: Version of the Azure OpenAI API, '
'API_KEY: API key for the Azure OpenAI API'
)
parser.add_argument('--token_per_minute', '-t', type=int, default=10000, help='Token per minute limit')
parser.add_argument(
'--output_dir', '-o', type=str,
default=os.path.join(this_file_dir, 'embeddings'), help='Output directory'
)
args = parser.parse_args()
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
output_json_name = os.path.join(output_dir, f"{args.model_name}.json")
if os.path.exists(output_json_name):
print(f"Loading already computed embeddings from {output_json_name}")
already_computed = json.load(open(output_json_name))
else:
already_computed = {}
embedder = Embedder(args.model_name, use_azure=args.use_azure, azure_config=args.azure_config, token_per_minute=args.token_per_minute)
all_inputs = gather_all_inputs()
all_input_set = set(all_inputs)
already_computed_set = set(already_computed.keys())
to_compute = list(all_input_set - already_computed_set)
print(f"Total inputs: {len(all_input_set)}")
print(f"Already computed: {len(already_computed_set)}")
print(f"To compute: {len(to_compute)}")
if len(to_compute) > 0:
counter = TokenCounterResetter()
counter.start()
already_computed = embedder.embed(to_compute, already_computed)
counter.kill()
with open(os.path.join(output_dir, f"{args.model_name}.json"), 'w') as f:
json.dump(already_computed, f)