diff --git a/README.md b/README.md index 90eb07938c29..a0b82e7bfef4 100644 --- a/README.md +++ b/README.md @@ -42,7 +42,8 @@ Next you may want to read: - [**Parameters**](https://github.com/microsoft/LightGBM/blob/master/docs/Parameters.rst) is an exhaustive list of customization you can make. - [**Distributed Learning**](https://github.com/microsoft/LightGBM/blob/master/docs/Parallel-Learning-Guide.rst) and [**GPU Learning**](https://github.com/microsoft/LightGBM/blob/master/docs/GPU-Tutorial.rst) can speed up computation. - [**Laurae++ interactive documentation**](https://sites.google.com/view/lauraepp/parameters) is a detailed guide for hyperparameters. -- [**Optuna Hyperparameter Tuner**](https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258) provides automated tuning for LightGBM hyperparameters ([code examples](https://github.com/optuna/optuna/blob/master/examples/)). +- [**FLAML**](https://www.microsoft.com/en-us/research/project/fast-and-lightweight-automl-for-large-scale-data/articles/flaml-a-fast-and-lightweight-automl-library/) provides automated tuning for LightGBM ([code examples](https://github.com/microsoft/FLAML/blob/main/notebook/flaml_lightgbm.ipynb)). +- [**Optuna Hyperparameter Tuner**](https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258) provides automated tuning for LightGBM hyperparameters ([code examples](https://github.com/optuna/optuna/tree/master/examples/lightgbm)). Documentation for contributors: @@ -59,6 +60,8 @@ Some old update logs are available at [Key Events](https://github.com/microsoft/ External (Unofficial) Repositories ---------------------------------- +FLAML (AutoML library for hyperparameter optimization): https://github.com/microsoft/FLAML + Optuna (hyperparameter optimization framework): https://github.com/optuna/optuna Julia-package: https://github.com/IQVIA-ML/LightGBM.jl diff --git a/docs/Parameters-Tuning.rst b/docs/Parameters-Tuning.rst index 8f47d03562bd..db333318920d 100644 --- a/docs/Parameters-Tuning.rst +++ b/docs/Parameters-Tuning.rst @@ -7,6 +7,7 @@ This page contains parameters tuning guides for different scenarios. - `Parameters <./Parameters.rst>`__ - `Python API <./Python-API.rst>`__ +- `FLAML`_ for automated hyperparameter tuning - `Optuna`_ for automated hyperparameter tuning Tune Parameters for the Leaf-wise (Best-first) Tree @@ -214,3 +215,5 @@ Deal with Over-fitting - Try increasing ``path_smooth`` .. _Optuna: https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258 + +.. _FLAML: https://github.com/microsoft/FLAML