-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathdataset_loader.cpp
1424 lines (1352 loc) · 60.4 KB
/
dataset_loader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*!
* Copyright (c) 2016 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#include <LightGBM/dataset_loader.h>
#include <LightGBM/network.h>
#include <LightGBM/utils/array_args.h>
#include <LightGBM/utils/json11.h>
#include <LightGBM/utils/log.h>
#include <LightGBM/utils/openmp_wrapper.h>
#include <chrono>
#include <fstream>
namespace LightGBM {
using json11::Json;
DatasetLoader::DatasetLoader(const Config& io_config, const PredictFunction& predict_fun, int num_class, const char* filename)
:config_(io_config), random_(config_.data_random_seed), predict_fun_(predict_fun), num_class_(num_class) {
label_idx_ = 0;
weight_idx_ = NO_SPECIFIC;
group_idx_ = NO_SPECIFIC;
SetHeader(filename);
store_raw_ = false;
if (io_config.linear_tree) {
store_raw_ = true;
}
}
DatasetLoader::~DatasetLoader() {
}
void DatasetLoader::SetHeader(const char* filename) {
std::unordered_map<std::string, int> name2idx;
std::string name_prefix("name:");
if (filename != nullptr && CheckCanLoadFromBin(filename) == "") {
TextReader<data_size_t> text_reader(filename, config_.header);
// get column names
if (config_.header) {
std::string first_line = text_reader.first_line();
feature_names_ = Common::Split(first_line.c_str(), "\t,");
}
// load label idx first
if (config_.label_column.size() > 0) {
if (Common::StartsWith(config_.label_column, name_prefix)) {
std::string name = config_.label_column.substr(name_prefix.size());
label_idx_ = -1;
for (int i = 0; i < static_cast<int>(feature_names_.size()); ++i) {
if (name == feature_names_[i]) {
label_idx_ = i;
break;
}
}
if (label_idx_ >= 0) {
Log::Info("Using column %s as label", name.c_str());
} else {
Log::Fatal("Could not find label column %s in data file \n"
"or data file doesn't contain header", name.c_str());
}
} else {
if (!Common::AtoiAndCheck(config_.label_column.c_str(), &label_idx_)) {
Log::Fatal("label_column is not a number,\n"
"if you want to use a column name,\n"
"please add the prefix \"name:\" to the column name");
}
Log::Info("Using column number %d as label", label_idx_);
}
}
if (!feature_names_.empty()) {
// erase label column name
feature_names_.erase(feature_names_.begin() + label_idx_);
for (size_t i = 0; i < feature_names_.size(); ++i) {
name2idx[feature_names_[i]] = static_cast<int>(i);
}
}
// load ignore columns
if (config_.ignore_column.size() > 0) {
if (Common::StartsWith(config_.ignore_column, name_prefix)) {
std::string names = config_.ignore_column.substr(name_prefix.size());
for (auto name : Common::Split(names.c_str(), ',')) {
if (name2idx.count(name) > 0) {
int tmp = name2idx[name];
ignore_features_.emplace(tmp);
} else {
Log::Fatal("Could not find ignore column %s in data file", name.c_str());
}
}
} else {
for (auto token : Common::Split(config_.ignore_column.c_str(), ',')) {
int tmp = 0;
if (!Common::AtoiAndCheck(token.c_str(), &tmp)) {
Log::Fatal("ignore_column is not a number,\n"
"if you want to use a column name,\n"
"please add the prefix \"name:\" to the column name");
}
ignore_features_.emplace(tmp);
}
}
}
// load weight idx
if (config_.weight_column.size() > 0) {
if (Common::StartsWith(config_.weight_column, name_prefix)) {
std::string name = config_.weight_column.substr(name_prefix.size());
if (name2idx.count(name) > 0) {
weight_idx_ = name2idx[name];
Log::Info("Using column %s as weight", name.c_str());
} else {
Log::Fatal("Could not find weight column %s in data file", name.c_str());
}
} else {
if (!Common::AtoiAndCheck(config_.weight_column.c_str(), &weight_idx_)) {
Log::Fatal("weight_column is not a number,\n"
"if you want to use a column name,\n"
"please add the prefix \"name:\" to the column name");
}
Log::Info("Using column number %d as weight", weight_idx_);
}
ignore_features_.emplace(weight_idx_);
}
// load group idx
if (config_.group_column.size() > 0) {
if (Common::StartsWith(config_.group_column, name_prefix)) {
std::string name = config_.group_column.substr(name_prefix.size());
if (name2idx.count(name) > 0) {
group_idx_ = name2idx[name];
Log::Info("Using column %s as group/query id", name.c_str());
} else {
Log::Fatal("Could not find group/query column %s in data file", name.c_str());
}
} else {
if (!Common::AtoiAndCheck(config_.group_column.c_str(), &group_idx_)) {
Log::Fatal("group_column is not a number,\n"
"if you want to use a column name,\n"
"please add the prefix \"name:\" to the column name");
}
Log::Info("Using column number %d as group/query id", group_idx_);
}
ignore_features_.emplace(group_idx_);
}
}
if (config_.categorical_feature.size() > 0) {
if (Common::StartsWith(config_.categorical_feature, name_prefix)) {
std::string names = config_.categorical_feature.substr(name_prefix.size());
for (auto name : Common::Split(names.c_str(), ',')) {
if (name2idx.count(name) > 0) {
int tmp = name2idx[name];
categorical_features_.emplace(tmp);
} else {
Log::Fatal("Could not find categorical_feature %s in data file", name.c_str());
}
}
} else {
for (auto token : Common::Split(config_.categorical_feature.c_str(), ',')) {
int tmp = 0;
if (!Common::AtoiAndCheck(token.c_str(), &tmp)) {
Log::Fatal("categorical_feature is not a number,\n"
"if you want to use a column name,\n"
"please add the prefix \"name:\" to the column name");
}
categorical_features_.emplace(tmp);
}
}
}
}
void CheckSampleSize(size_t sample_cnt, size_t num_data) {
if (static_cast<double>(sample_cnt) / num_data < 0.2f &&
sample_cnt < 100000) {
Log::Warning(
"Using too small ``bin_construct_sample_cnt`` may encounter "
"unexpected "
"errors and poor accuracy.");
}
}
Dataset* DatasetLoader::LoadFromFile(const char* filename, int rank, int num_machines) {
// don't support query id in data file when using distributed training
if (num_machines > 1 && !config_.pre_partition) {
if (group_idx_ > 0) {
Log::Fatal("Using a query id without pre-partitioning the data file is not supported for distributed training.\n"
"Please use an additional query file or pre-partition the data");
}
}
auto dataset = std::unique_ptr<Dataset>(new Dataset());
if (store_raw_) {
dataset->SetHasRaw(true);
}
data_size_t num_global_data = 0;
std::vector<data_size_t> used_data_indices;
auto bin_filename = CheckCanLoadFromBin(filename);
bool is_load_from_binary = false;
if (bin_filename.size() == 0) {
auto parser = std::unique_ptr<Parser>(Parser::CreateParser(filename, config_.header, 0, label_idx_,
config_.precise_float_parser));
if (parser == nullptr) {
Log::Fatal("Could not recognize data format of %s", filename);
}
dataset->data_filename_ = filename;
dataset->label_idx_ = label_idx_;
dataset->metadata_.Init(filename);
if (!config_.two_round) {
// read data to memory
auto text_data = LoadTextDataToMemory(filename, dataset->metadata_, rank, num_machines, &num_global_data, &used_data_indices);
dataset->num_data_ = static_cast<data_size_t>(text_data.size());
// sample data
auto sample_data = SampleTextDataFromMemory(text_data);
CheckSampleSize(sample_data.size(),
static_cast<size_t>(dataset->num_data_));
// construct feature bin mappers
ConstructBinMappersFromTextData(rank, num_machines, sample_data, parser.get(), dataset.get());
if (dataset->has_raw()) {
dataset->ResizeRaw(dataset->num_data_);
}
// initialize label
dataset->metadata_.Init(dataset->num_data_, weight_idx_, group_idx_);
// extract features
ExtractFeaturesFromMemory(&text_data, parser.get(), dataset.get());
text_data.clear();
} else {
// sample data from file
auto sample_data = SampleTextDataFromFile(filename, dataset->metadata_, rank, num_machines, &num_global_data, &used_data_indices);
if (used_data_indices.size() > 0) {
dataset->num_data_ = static_cast<data_size_t>(used_data_indices.size());
} else {
dataset->num_data_ = num_global_data;
}
CheckSampleSize(sample_data.size(),
static_cast<size_t>(dataset->num_data_));
// construct feature bin mappers
ConstructBinMappersFromTextData(rank, num_machines, sample_data, parser.get(), dataset.get());
if (dataset->has_raw()) {
dataset->ResizeRaw(dataset->num_data_);
}
// initialize label
dataset->metadata_.Init(dataset->num_data_, weight_idx_, group_idx_);
Log::Info("Making second pass...");
// extract features
ExtractFeaturesFromFile(filename, parser.get(), used_data_indices, dataset.get());
}
} else {
// load data from binary file
is_load_from_binary = true;
Log::Info("Load from binary file %s", bin_filename.c_str());
dataset.reset(LoadFromBinFile(filename, bin_filename.c_str(), rank, num_machines, &num_global_data, &used_data_indices));
}
// check meta data
dataset->metadata_.CheckOrPartition(num_global_data, used_data_indices);
// need to check training data
CheckDataset(dataset.get(), is_load_from_binary);
return dataset.release();
}
Dataset* DatasetLoader::LoadFromFileAlignWithOtherDataset(const char* filename, const Dataset* train_data) {
data_size_t num_global_data = 0;
std::vector<data_size_t> used_data_indices;
auto dataset = std::unique_ptr<Dataset>(new Dataset());
if (store_raw_) {
dataset->SetHasRaw(true);
}
auto bin_filename = CheckCanLoadFromBin(filename);
if (bin_filename.size() == 0) {
auto parser = std::unique_ptr<Parser>(Parser::CreateParser(filename, config_.header, 0, label_idx_,
config_.precise_float_parser));
if (parser == nullptr) {
Log::Fatal("Could not recognize data format of %s", filename);
}
dataset->data_filename_ = filename;
dataset->label_idx_ = label_idx_;
dataset->metadata_.Init(filename);
if (!config_.two_round) {
// read data in memory
auto text_data = LoadTextDataToMemory(filename, dataset->metadata_, 0, 1, &num_global_data, &used_data_indices);
dataset->num_data_ = static_cast<data_size_t>(text_data.size());
// initialize label
dataset->metadata_.Init(dataset->num_data_, weight_idx_, group_idx_);
dataset->CreateValid(train_data);
if (dataset->has_raw()) {
dataset->ResizeRaw(dataset->num_data_);
}
// extract features
ExtractFeaturesFromMemory(&text_data, parser.get(), dataset.get());
text_data.clear();
} else {
TextReader<data_size_t> text_reader(filename, config_.header);
// Get number of lines of data file
dataset->num_data_ = static_cast<data_size_t>(text_reader.CountLine());
num_global_data = dataset->num_data_;
// initialize label
dataset->metadata_.Init(dataset->num_data_, weight_idx_, group_idx_);
dataset->CreateValid(train_data);
if (dataset->has_raw()) {
dataset->ResizeRaw(dataset->num_data_);
}
// extract features
ExtractFeaturesFromFile(filename, parser.get(), used_data_indices, dataset.get());
}
} else {
// load data from binary file
dataset.reset(LoadFromBinFile(filename, bin_filename.c_str(), 0, 1, &num_global_data, &used_data_indices));
}
// not need to check validation data
// check meta data
dataset->metadata_.CheckOrPartition(num_global_data, used_data_indices);
return dataset.release();
}
Dataset* DatasetLoader::LoadFromBinFile(const char* data_filename, const char* bin_filename,
int rank, int num_machines, int* num_global_data,
std::vector<data_size_t>* used_data_indices) {
auto dataset = std::unique_ptr<Dataset>(new Dataset());
auto reader = VirtualFileReader::Make(bin_filename);
dataset->data_filename_ = data_filename;
if (!reader->Init()) {
Log::Fatal("Could not read binary data from %s", bin_filename);
}
// buffer to read binary file
size_t buffer_size = 16 * 1024 * 1024;
auto buffer = std::vector<char>(buffer_size);
// check token
size_t size_of_token = std::strlen(Dataset::binary_file_token);
size_t read_cnt = reader->Read(
buffer.data(),
VirtualFileWriter::AlignedSize(sizeof(char) * size_of_token));
if (read_cnt < sizeof(char) * size_of_token) {
Log::Fatal("Binary file error: token has the wrong size");
}
if (std::string(buffer.data()) != std::string(Dataset::binary_file_token)) {
Log::Fatal("Input file is not LightGBM binary file");
}
// read size of header
read_cnt = reader->Read(buffer.data(), sizeof(size_t));
if (read_cnt != sizeof(size_t)) {
Log::Fatal("Binary file error: header has the wrong size");
}
size_t size_of_head = *(reinterpret_cast<size_t*>(buffer.data()));
// re-allocmate space if not enough
if (size_of_head > buffer_size) {
buffer_size = size_of_head;
buffer.resize(buffer_size);
}
// read header
read_cnt = reader->Read(buffer.data(), size_of_head);
if (read_cnt != size_of_head) {
Log::Fatal("Binary file error: header is incorrect");
}
// get header
const char* mem_ptr = buffer.data();
dataset->num_data_ = *(reinterpret_cast<const data_size_t*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(dataset->num_data_));
dataset->num_features_ = *(reinterpret_cast<const int*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(dataset->num_features_));
dataset->num_total_features_ = *(reinterpret_cast<const int*>(mem_ptr));
mem_ptr +=
VirtualFileWriter::AlignedSize(sizeof(dataset->num_total_features_));
dataset->label_idx_ = *(reinterpret_cast<const int*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(dataset->label_idx_));
dataset->max_bin_ = *(reinterpret_cast<const int*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(dataset->max_bin_));
dataset->bin_construct_sample_cnt_ = *(reinterpret_cast<const int*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(
sizeof(dataset->bin_construct_sample_cnt_));
dataset->min_data_in_bin_ = *(reinterpret_cast<const int*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(dataset->min_data_in_bin_));
dataset->use_missing_ = *(reinterpret_cast<const bool*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(dataset->use_missing_));
dataset->zero_as_missing_ = *(reinterpret_cast<const bool*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(dataset->zero_as_missing_));
dataset->has_raw_ = *(reinterpret_cast<const bool*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(dataset->has_raw_));
const int* tmp_feature_map = reinterpret_cast<const int*>(mem_ptr);
dataset->used_feature_map_.clear();
for (int i = 0; i < dataset->num_total_features_; ++i) {
dataset->used_feature_map_.push_back(tmp_feature_map[i]);
}
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(int) *
dataset->num_total_features_);
// num_groups
dataset->num_groups_ = *(reinterpret_cast<const int*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(dataset->num_groups_));
// real_feature_idx_
const int* tmp_ptr_real_feature_idx_ = reinterpret_cast<const int*>(mem_ptr);
dataset->real_feature_idx_.clear();
for (int i = 0; i < dataset->num_features_; ++i) {
dataset->real_feature_idx_.push_back(tmp_ptr_real_feature_idx_[i]);
}
mem_ptr +=
VirtualFileWriter::AlignedSize(sizeof(int) * dataset->num_features_);
// feature2group
const int* tmp_ptr_feature2group = reinterpret_cast<const int*>(mem_ptr);
dataset->feature2group_.clear();
for (int i = 0; i < dataset->num_features_; ++i) {
dataset->feature2group_.push_back(tmp_ptr_feature2group[i]);
}
mem_ptr +=
VirtualFileWriter::AlignedSize(sizeof(int) * dataset->num_features_);
// feature2subfeature
const int* tmp_ptr_feature2subfeature = reinterpret_cast<const int*>(mem_ptr);
dataset->feature2subfeature_.clear();
for (int i = 0; i < dataset->num_features_; ++i) {
dataset->feature2subfeature_.push_back(tmp_ptr_feature2subfeature[i]);
}
mem_ptr +=
VirtualFileWriter::AlignedSize(sizeof(int) * dataset->num_features_);
// group_bin_boundaries
const uint64_t* tmp_ptr_group_bin_boundaries = reinterpret_cast<const uint64_t*>(mem_ptr);
dataset->group_bin_boundaries_.clear();
for (int i = 0; i < dataset->num_groups_ + 1; ++i) {
dataset->group_bin_boundaries_.push_back(tmp_ptr_group_bin_boundaries[i]);
}
mem_ptr += sizeof(uint64_t) * (dataset->num_groups_ + 1);
// group_feature_start_
const int* tmp_ptr_group_feature_start = reinterpret_cast<const int*>(mem_ptr);
dataset->group_feature_start_.clear();
for (int i = 0; i < dataset->num_groups_; ++i) {
dataset->group_feature_start_.push_back(tmp_ptr_group_feature_start[i]);
}
mem_ptr +=
VirtualFileWriter::AlignedSize(sizeof(int) * (dataset->num_groups_));
// group_feature_cnt_
const int* tmp_ptr_group_feature_cnt = reinterpret_cast<const int*>(mem_ptr);
dataset->group_feature_cnt_.clear();
for (int i = 0; i < dataset->num_groups_; ++i) {
dataset->group_feature_cnt_.push_back(tmp_ptr_group_feature_cnt[i]);
}
mem_ptr +=
VirtualFileWriter::AlignedSize(sizeof(int) * (dataset->num_groups_));
if (!config_.max_bin_by_feature.empty()) {
CHECK_EQ(static_cast<size_t>(dataset->num_total_features_), config_.max_bin_by_feature.size());
CHECK_GT(*(std::min_element(config_.max_bin_by_feature.begin(), config_.max_bin_by_feature.end())), 1);
dataset->max_bin_by_feature_.resize(dataset->num_total_features_);
dataset->max_bin_by_feature_.assign(config_.max_bin_by_feature.begin(), config_.max_bin_by_feature.end());
} else {
const int32_t* tmp_ptr_max_bin_by_feature = reinterpret_cast<const int32_t*>(mem_ptr);
dataset->max_bin_by_feature_.clear();
for (int i = 0; i < dataset->num_total_features_; ++i) {
dataset->max_bin_by_feature_.push_back(tmp_ptr_max_bin_by_feature[i]);
}
}
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(int32_t) *
(dataset->num_total_features_));
if (ArrayArgs<int32_t>::CheckAll(dataset->max_bin_by_feature_, -1)) {
dataset->max_bin_by_feature_.clear();
}
// get feature names
dataset->feature_names_.clear();
// write feature names
for (int i = 0; i < dataset->num_total_features_; ++i) {
int str_len = *(reinterpret_cast<const int*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(int));
std::stringstream str_buf;
auto tmp_arr = reinterpret_cast<const char*>(mem_ptr);
for (int j = 0; j < str_len; ++j) {
char tmp_char = tmp_arr[j];
str_buf << tmp_char;
}
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(char) * str_len);
dataset->feature_names_.emplace_back(str_buf.str());
}
// get forced_bin_bounds_
dataset->forced_bin_bounds_ = std::vector<std::vector<double>>(dataset->num_total_features_, std::vector<double>());
for (int i = 0; i < dataset->num_total_features_; ++i) {
int num_bounds = *(reinterpret_cast<const int*>(mem_ptr));
mem_ptr += VirtualFileWriter::AlignedSize(sizeof(int));
dataset->forced_bin_bounds_[i] = std::vector<double>();
const double* tmp_ptr_forced_bounds =
reinterpret_cast<const double*>(mem_ptr);
for (int j = 0; j < num_bounds; ++j) {
double bound = tmp_ptr_forced_bounds[j];
dataset->forced_bin_bounds_[i].push_back(bound);
}
mem_ptr += num_bounds * sizeof(double);
}
// read size of meta data
read_cnt = reader->Read(buffer.data(), sizeof(size_t));
if (read_cnt != sizeof(size_t)) {
Log::Fatal("Binary file error: meta data has the wrong size");
}
size_t size_of_metadata = *(reinterpret_cast<size_t*>(buffer.data()));
// re-allocate space if not enough
if (size_of_metadata > buffer_size) {
buffer_size = size_of_metadata;
buffer.resize(buffer_size);
}
// read meta data
read_cnt = reader->Read(buffer.data(), size_of_metadata);
if (read_cnt != size_of_metadata) {
Log::Fatal("Binary file error: meta data is incorrect");
}
// load meta data
dataset->metadata_.LoadFromMemory(buffer.data());
*num_global_data = dataset->num_data_;
used_data_indices->clear();
// sample local used data if need to partition
if (num_machines > 1 && !config_.pre_partition) {
const data_size_t* query_boundaries = dataset->metadata_.query_boundaries();
if (query_boundaries == nullptr) {
// if not contain query file, minimal sample unit is one record
for (data_size_t i = 0; i < dataset->num_data_; ++i) {
if (random_.NextShort(0, num_machines) == rank) {
used_data_indices->push_back(i);
}
}
} else {
// if contain query file, minimal sample unit is one query
data_size_t num_queries = dataset->metadata_.num_queries();
data_size_t qid = -1;
bool is_query_used = false;
for (data_size_t i = 0; i < dataset->num_data_; ++i) {
if (qid >= num_queries) {
Log::Fatal("Current query exceeds the range of the query file,\n"
"please ensure the query file is correct");
}
if (i >= query_boundaries[qid + 1]) {
// if is new query
is_query_used = false;
if (random_.NextShort(0, num_machines) == rank) {
is_query_used = true;
}
++qid;
}
if (is_query_used) {
used_data_indices->push_back(i);
}
}
}
dataset->num_data_ = static_cast<data_size_t>((*used_data_indices).size());
}
dataset->metadata_.PartitionLabel(*used_data_indices);
// read feature data
for (int i = 0; i < dataset->num_groups_; ++i) {
// read feature size
read_cnt = reader->Read(buffer.data(), sizeof(size_t));
if (read_cnt != sizeof(size_t)) {
Log::Fatal("Binary file error: feature %d has the wrong size", i);
}
size_t size_of_feature = *(reinterpret_cast<size_t*>(buffer.data()));
// re-allocate space if not enough
if (size_of_feature > buffer_size) {
buffer_size = size_of_feature;
buffer.resize(buffer_size);
}
read_cnt = reader->Read(buffer.data(), size_of_feature);
if (read_cnt != size_of_feature) {
Log::Fatal("Binary file error: feature %d is incorrect, read count: %d", i, read_cnt);
}
dataset->feature_groups_.emplace_back(std::unique_ptr<FeatureGroup>(
new FeatureGroup(buffer.data(),
*num_global_data,
*used_data_indices, i)));
}
dataset->feature_groups_.shrink_to_fit();
// raw data
dataset->numeric_feature_map_ = std::vector<int>(dataset->num_features_, false);
dataset->num_numeric_features_ = 0;
for (int i = 0; i < dataset->num_features_; ++i) {
if (dataset->FeatureBinMapper(i)->bin_type() == BinType::CategoricalBin) {
dataset->numeric_feature_map_[i] = -1;
} else {
dataset->numeric_feature_map_[i] = dataset->num_numeric_features_;
++dataset->num_numeric_features_;
}
}
if (dataset->has_raw()) {
dataset->ResizeRaw(dataset->num_data());
size_t row_size = dataset->num_numeric_features_ * sizeof(float);
if (row_size > buffer_size) {
buffer_size = row_size;
buffer.resize(buffer_size);
}
for (int i = 0; i < dataset->num_data(); ++i) {
read_cnt = reader->Read(buffer.data(), row_size);
if (read_cnt != row_size) {
Log::Fatal("Binary file error: row %d of raw data is incorrect, read count: %d", i, read_cnt);
}
mem_ptr = buffer.data();
const float* tmp_ptr_raw_row = reinterpret_cast<const float*>(mem_ptr);
for (int j = 0; j < dataset->num_features(); ++j) {
int feat_ind = dataset->numeric_feature_map_[j];
if (feat_ind >= 0) {
dataset->raw_data_[feat_ind][i] = tmp_ptr_raw_row[feat_ind];
}
}
mem_ptr += row_size;
}
}
dataset->is_finish_load_ = true;
return dataset.release();
}
Dataset* DatasetLoader::ConstructFromSampleData(double** sample_values,
int** sample_indices, int num_col, const int* num_per_col,
size_t total_sample_size, data_size_t num_data) {
CheckSampleSize(total_sample_size, static_cast<size_t>(num_data));
int num_total_features = num_col;
if (Network::num_machines() > 1) {
num_total_features = Network::GlobalSyncUpByMax(num_total_features);
}
std::vector<std::unique_ptr<BinMapper>> bin_mappers(num_total_features);
// fill feature_names_ if not header
if (feature_names_.empty()) {
for (int i = 0; i < num_col; ++i) {
std::stringstream str_buf;
str_buf << "Column_" << i;
feature_names_.push_back(str_buf.str());
}
}
if (!config_.max_bin_by_feature.empty()) {
CHECK_EQ(static_cast<size_t>(num_col), config_.max_bin_by_feature.size());
CHECK_GT(*(std::min_element(config_.max_bin_by_feature.begin(), config_.max_bin_by_feature.end())), 1);
}
// get forced split
std::string forced_bins_path = config_.forcedbins_filename;
std::vector<std::vector<double>> forced_bin_bounds = DatasetLoader::GetForcedBins(forced_bins_path, num_col, categorical_features_);
const data_size_t filter_cnt = static_cast<data_size_t>(
static_cast<double>(config_.min_data_in_leaf * total_sample_size) / num_data);
if (Network::num_machines() == 1) {
// if only one machine, find bin locally
OMP_INIT_EX();
#pragma omp parallel for schedule(guided)
for (int i = 0; i < num_col; ++i) {
OMP_LOOP_EX_BEGIN();
if (ignore_features_.count(i) > 0) {
bin_mappers[i] = nullptr;
continue;
}
BinType bin_type = BinType::NumericalBin;
if (categorical_features_.count(i)) {
bin_type = BinType::CategoricalBin;
bool feat_is_unconstrained = ((config_.monotone_constraints.size() == 0) || (config_.monotone_constraints[i] == 0));
if (!feat_is_unconstrained) {
Log::Fatal("The output cannot be monotone with respect to categorical features");
}
}
bin_mappers[i].reset(new BinMapper());
if (config_.max_bin_by_feature.empty()) {
bin_mappers[i]->FindBin(sample_values[i], num_per_col[i], total_sample_size,
config_.max_bin, config_.min_data_in_bin, filter_cnt, config_.feature_pre_filter,
bin_type, config_.use_missing, config_.zero_as_missing,
forced_bin_bounds[i]);
} else {
bin_mappers[i]->FindBin(sample_values[i], num_per_col[i], total_sample_size,
config_.max_bin_by_feature[i], config_.min_data_in_bin,
filter_cnt, config_.feature_pre_filter, bin_type, config_.use_missing,
config_.zero_as_missing, forced_bin_bounds[i]);
}
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
} else {
// if have multi-machines, need to find bin distributed
// different machines will find bin for different features
int num_machines = Network::num_machines();
int rank = Network::rank();
// start and len will store the process feature indices for different machines
// machine i will find bins for features in [ start[i], start[i] + len[i] )
std::vector<int> start(num_machines);
std::vector<int> len(num_machines);
int step = (num_total_features + num_machines - 1) / num_machines;
if (step < 1) { step = 1; }
start[0] = 0;
for (int i = 0; i < num_machines - 1; ++i) {
len[i] = std::min(step, num_total_features - start[i]);
start[i + 1] = start[i] + len[i];
}
len[num_machines - 1] = num_total_features - start[num_machines - 1];
OMP_INIT_EX();
#pragma omp parallel for schedule(guided)
for (int i = 0; i < len[rank]; ++i) {
OMP_LOOP_EX_BEGIN();
if (ignore_features_.count(start[rank] + i) > 0) {
continue;
}
BinType bin_type = BinType::NumericalBin;
if (categorical_features_.count(start[rank] + i)) {
bin_type = BinType::CategoricalBin;
}
bin_mappers[i].reset(new BinMapper());
if (num_col <= start[rank] + i) {
continue;
}
if (config_.max_bin_by_feature.empty()) {
bin_mappers[i]->FindBin(sample_values[start[rank] + i], num_per_col[start[rank] + i],
total_sample_size, config_.max_bin, config_.min_data_in_bin,
filter_cnt, config_.feature_pre_filter, bin_type, config_.use_missing, config_.zero_as_missing,
forced_bin_bounds[i]);
} else {
bin_mappers[i]->FindBin(sample_values[start[rank] + i], num_per_col[start[rank] + i],
total_sample_size, config_.max_bin_by_feature[start[rank] + i],
config_.min_data_in_bin, filter_cnt, config_.feature_pre_filter, bin_type, config_.use_missing,
config_.zero_as_missing, forced_bin_bounds[i]);
}
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
comm_size_t self_buf_size = 0;
for (int i = 0; i < len[rank]; ++i) {
if (ignore_features_.count(start[rank] + i) > 0) {
continue;
}
self_buf_size += static_cast<comm_size_t>(bin_mappers[i]->SizesInByte());
}
std::vector<char> input_buffer(self_buf_size);
auto cp_ptr = input_buffer.data();
for (int i = 0; i < len[rank]; ++i) {
if (ignore_features_.count(start[rank] + i) > 0) {
continue;
}
bin_mappers[i]->CopyTo(cp_ptr);
cp_ptr += bin_mappers[i]->SizesInByte();
// free
bin_mappers[i].reset(nullptr);
}
std::vector<comm_size_t> size_len = Network::GlobalArray(self_buf_size);
std::vector<comm_size_t> size_start(num_machines, 0);
for (int i = 1; i < num_machines; ++i) {
size_start[i] = size_start[i - 1] + size_len[i - 1];
}
comm_size_t total_buffer_size = size_start[num_machines - 1] + size_len[num_machines - 1];
std::vector<char> output_buffer(total_buffer_size);
// gather global feature bin mappers
Network::Allgather(input_buffer.data(), size_start.data(), size_len.data(), output_buffer.data(), total_buffer_size);
cp_ptr = output_buffer.data();
// restore features bins from buffer
for (int i = 0; i < num_total_features; ++i) {
if (ignore_features_.count(i) > 0) {
bin_mappers[i] = nullptr;
continue;
}
bin_mappers[i].reset(new BinMapper());
bin_mappers[i]->CopyFrom(cp_ptr);
cp_ptr += bin_mappers[i]->SizesInByte();
}
}
auto dataset = std::unique_ptr<Dataset>(new Dataset(num_data));
dataset->Construct(&bin_mappers, num_total_features, forced_bin_bounds, sample_indices, sample_values, num_per_col, num_col, total_sample_size, config_);
if (dataset->has_raw()) {
dataset->ResizeRaw(num_data);
}
dataset->set_feature_names(feature_names_);
return dataset.release();
}
// ---- private functions ----
void DatasetLoader::CheckDataset(const Dataset* dataset, bool is_load_from_binary) {
if (dataset->num_data_ <= 0) {
Log::Fatal("Data file %s is empty", dataset->data_filename_.c_str());
}
if (dataset->feature_names_.size() != static_cast<size_t>(dataset->num_total_features_)) {
Log::Fatal("Size of feature name error, should be %d, got %d", dataset->num_total_features_,
static_cast<int>(dataset->feature_names_.size()));
}
bool is_feature_order_by_group = true;
int last_group = -1;
int last_sub_feature = -1;
// if features are ordered, not need to use hist_buf
for (int i = 0; i < dataset->num_features_; ++i) {
int group = dataset->feature2group_[i];
int sub_feature = dataset->feature2subfeature_[i];
if (group < last_group) {
is_feature_order_by_group = false;
} else if (group == last_group) {
if (sub_feature <= last_sub_feature) {
is_feature_order_by_group = false;
break;
}
}
last_group = group;
last_sub_feature = sub_feature;
}
if (!is_feature_order_by_group) {
Log::Fatal("Features in dataset should be ordered by group");
}
if (is_load_from_binary) {
if (dataset->max_bin_ != config_.max_bin) {
Log::Fatal("Dataset was constructed with parameter max_bin=%d. It cannot be changed to %d when loading from binary file.",
dataset->max_bin_, config_.max_bin);
}
if (dataset->min_data_in_bin_ != config_.min_data_in_bin) {
Log::Fatal("Dataset was constructed with parameter min_data_in_bin=%d. It cannot be changed to %d when loading from binary file.",
dataset->min_data_in_bin_, config_.min_data_in_bin);
}
if (dataset->use_missing_ != config_.use_missing) {
Log::Fatal("Dataset was constructed with parameter use_missing=%d. It cannot be changed to %d when loading from binary file.",
dataset->use_missing_, config_.use_missing);
}
if (dataset->zero_as_missing_ != config_.zero_as_missing) {
Log::Fatal("Dataset was constructed with parameter zero_as_missing=%d. It cannot be changed to %d when loading from binary file.",
dataset->zero_as_missing_, config_.zero_as_missing);
}
if (dataset->bin_construct_sample_cnt_ != config_.bin_construct_sample_cnt) {
Log::Fatal("Dataset was constructed with parameter bin_construct_sample_cnt=%d. It cannot be changed to %d when loading from binary file.",
dataset->bin_construct_sample_cnt_, config_.bin_construct_sample_cnt);
}
if ((dataset->max_bin_by_feature_.size() != config_.max_bin_by_feature.size()) ||
!std::equal(dataset->max_bin_by_feature_.begin(), dataset->max_bin_by_feature_.end(),
config_.max_bin_by_feature.begin())) {
Log::Fatal("Parameter max_bin_by_feature cannot be changed when loading from binary file.");
}
if (config_.label_column != "") {
Log::Warning("Parameter label_column works only in case of loading data directly from text file. It will be ignored when loading from binary file.");
}
if (config_.weight_column != "") {
Log::Warning("Parameter weight_column works only in case of loading data directly from text file. It will be ignored when loading from binary file.");
}
if (config_.group_column != "") {
Log::Warning("Parameter group_column works only in case of loading data directly from text file. It will be ignored when loading from binary file.");
}
if (config_.ignore_column != "") {
Log::Warning("Parameter ignore_column works only in case of loading data directly from text file. It will be ignored when loading from binary file.");
}
if (config_.two_round) {
Log::Warning("Parameter two_round works only in case of loading data directly from text file. It will be ignored when loading from binary file.");
}
if (config_.header) {
Log::Warning("Parameter header works only in case of loading data directly from text file. It will be ignored when loading from binary file.");
}
}
}
std::vector<std::string> DatasetLoader::LoadTextDataToMemory(const char* filename, const Metadata& metadata,
int rank, int num_machines, int* num_global_data,
std::vector<data_size_t>* used_data_indices) {
TextReader<data_size_t> text_reader(filename, config_.header, config_.file_load_progress_interval_bytes);
used_data_indices->clear();
if (num_machines == 1 || config_.pre_partition) {
// read all lines
*num_global_data = text_reader.ReadAllLines();
} else { // need partition data
// get query data
const data_size_t* query_boundaries = metadata.query_boundaries();
if (query_boundaries == nullptr) {
// if not contain query data, minimal sample unit is one record
*num_global_data = text_reader.ReadAndFilterLines([this, rank, num_machines](data_size_t) {
if (random_.NextShort(0, num_machines) == rank) {
return true;
} else {
return false;
}
}, used_data_indices);
} else {
// if contain query data, minimal sample unit is one query
data_size_t num_queries = metadata.num_queries();
data_size_t qid = -1;
bool is_query_used = false;
*num_global_data = text_reader.ReadAndFilterLines(
[this, rank, num_machines, &qid, &query_boundaries, &is_query_used, num_queries]
(data_size_t line_idx) {
if (qid >= num_queries) {
Log::Fatal("Current query exceeds the range of the query file,\n"
"please ensure the query file is correct");
}
if (line_idx >= query_boundaries[qid + 1]) {
// if is new query
is_query_used = false;
if (random_.NextShort(0, num_machines) == rank) {
is_query_used = true;
}
++qid;
}
return is_query_used;
}, used_data_indices);
}
}
return std::move(text_reader.Lines());
}
std::vector<std::string> DatasetLoader::SampleTextDataFromMemory(const std::vector<std::string>& data) {
int sample_cnt = config_.bin_construct_sample_cnt;
if (static_cast<size_t>(sample_cnt) > data.size()) {
sample_cnt = static_cast<int>(data.size());
}
auto sample_indices = random_.Sample(static_cast<int>(data.size()), sample_cnt);
std::vector<std::string> out(sample_indices.size());
for (size_t i = 0; i < sample_indices.size(); ++i) {
const size_t idx = sample_indices[i];
out[i] = data[idx];
}
return out;
}
std::vector<std::string> DatasetLoader::SampleTextDataFromFile(const char* filename, const Metadata& metadata,
int rank, int num_machines, int* num_global_data,
std::vector<data_size_t>* used_data_indices) {
const data_size_t sample_cnt = static_cast<data_size_t>(config_.bin_construct_sample_cnt);
TextReader<data_size_t> text_reader(filename, config_.header, config_.file_load_progress_interval_bytes);
std::vector<std::string> out_data;
if (num_machines == 1 || config_.pre_partition) {
*num_global_data = static_cast<data_size_t>(text_reader.SampleFromFile(&random_, sample_cnt, &out_data));
} else { // need partition data
// get query data
const data_size_t* query_boundaries = metadata.query_boundaries();
if (query_boundaries == nullptr) {
// if not contain query file, minimal sample unit is one record
*num_global_data = text_reader.SampleAndFilterFromFile([this, rank, num_machines]
(data_size_t) {
if (random_.NextShort(0, num_machines) == rank) {
return true;
} else {
return false;
}
}, used_data_indices, &random_, sample_cnt, &out_data);
} else {
// if contain query file, minimal sample unit is one query
data_size_t num_queries = metadata.num_queries();
data_size_t qid = -1;
bool is_query_used = false;
*num_global_data = text_reader.SampleAndFilterFromFile(
[this, rank, num_machines, &qid, &query_boundaries, &is_query_used, num_queries]
(data_size_t line_idx) {
if (qid >= num_queries) {
Log::Fatal("Query id exceeds the range of the query file, "
"please ensure the query file is correct");
}
if (line_idx >= query_boundaries[qid + 1]) {
// if is new query
is_query_used = false;
if (random_.NextShort(0, num_machines) == rank) {
is_query_used = true;
}
++qid;
}
return is_query_used;
}, used_data_indices, &random_, sample_cnt, &out_data);
}
}
return out_data;
}
void DatasetLoader::ConstructBinMappersFromTextData(int rank, int num_machines,
const std::vector<std::string>& sample_data,
const Parser* parser, Dataset* dataset) {
auto t1 = std::chrono::high_resolution_clock::now();
std::vector<std::vector<double>> sample_values;
std::vector<std::vector<int>> sample_indices;
std::vector<std::pair<int, double>> oneline_features;
double label;
for (int i = 0; i < static_cast<int>(sample_data.size()); ++i) {
oneline_features.clear();
// parse features
parser->ParseOneLine(sample_data[i].c_str(), &oneline_features, &label);
for (std::pair<int, double>& inner_data : oneline_features) {
if (static_cast<size_t>(inner_data.first) >= sample_values.size()) {
sample_values.resize(inner_data.first + 1);
sample_indices.resize(inner_data.first + 1);
}
if (std::fabs(inner_data.second) > kZeroThreshold || std::isnan(inner_data.second)) {
sample_values[inner_data.first].emplace_back(inner_data.second);
sample_indices[inner_data.first].emplace_back(i);
}
}
}
dataset->feature_groups_.clear();
dataset->num_total_features_ = std::max(static_cast<int>(sample_values.size()), parser->NumFeatures());
if (num_machines > 1) {
dataset->num_total_features_ = Network::GlobalSyncUpByMax(dataset->num_total_features_);
}
if (!feature_names_.empty()) {
CHECK_EQ(dataset->num_total_features_, static_cast<int>(feature_names_.size()));
}