-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutliz.py
438 lines (382 loc) · 15.1 KB
/
utliz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import numpy as np
import torch
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D
from sklearn import metrics
def show_pointcloud(pc, size=10):
if type(pc) == torch.Tensor:
pc = pc.numpy()
if pc.shape[0]==3:
pc = pc.transpose()
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.scatter(pc[:,0], pc[:,1], pc[:,2],s=size)
def show_pointcloud_batch(pc, size=10):
if type(pc) == torch.Tensor:
pc = pc.numpy()
if pc.shape[1]==3:
pc = pc.transpose(0,2,1)
B,N,C = pc.shape
fig = plt.figure()
for i in range(B):
ax = fig.add_subplot(2, int(B/2), i+1, projection='3d')
ax.scatter(pc[i, :, 0], pc[i, :, 1], pc[i, :, 2], s=size)
def show_pointcloud_2pc(pc_1, pc_2, ax=None, c1='r', c2='b',s1=1, s2=1):
if type(pc_1) == torch.Tensor:
pc_1 = pc_1.cpu().detach().numpy()
pc_2 = pc_2.cpu().detach().numpy()
if pc_1.shape[0]==3:
pc_1 = pc_1.transpose()
pc_2 = pc_2.transpose()
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.scatter(pc_1[:, 0], pc_1[:, 1], pc_1[:, 2], s=s1, c=c1, alpha=0.5)
ax.scatter(pc_2[:, 0], pc_2[:, 1], pc_2[:, 2], s=s2, c=c2, alpha=0.5)
def show_pointcloud_perpointcolor(pc, size=10,c='r'):
# pc.shape = Nx3, c.shape = N
if type(pc) == torch.Tensor:
pc = pc.cpu().detach().numpy()
if pc.shape[0]==3:
pc = pc.transpose()
if type(c) == torch.Tensor:
c = c.cpu().detach().numpy()
if type(c) == np.ndarray:
if len(c.shape) == 2:
c = np.squeeze(c)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax0 = ax.scatter(pc[:,0], pc[:,1], pc[:,2],s=size, alpha=0.5,c=c)
plt.colorbar(ax0, ax=ax)
def cal_auc(label, pred, pos_label=1, return_fpr_tpr=False, save_fpr_tpr=False):
if type(label) == torch.Tensor:
label = label.detach().cpu().numpy()
if type(pred) == torch.Tensor:
pred = pred.detach().cpu().numpy()
fpr, tpr, thresholds = metrics.roc_curve(label, pred, pos_label=pos_label, drop_intermediate=False)
auc_score = metrics.auc(fpr, tpr)
if save_fpr_tpr:
if auc_score > 0.5:
np.save("./ROC_reinter/{:.0f}".format(auc_score * 10000),
np.concatenate([np.expand_dims(fpr, axis=1), np.expand_dims(tpr, axis=1)], axis=1))
if return_fpr_tpr:
return fpr, tpr, auc_score
return auc_score
def cal_acc(label, pred, threshold=0.5):
if type(label) == torch.Tensor:
label = label.detach().cpu().numpy()
if type(pred) == torch.Tensor:
pred = pred.detach().cpu().numpy()
pred_logit = pred>threshold
pred_logit = pred_logit.astype(np.long)
acc = np.sum(pred_logit == label)/label.shape[0]
return acc
def optimal_thresh(fpr, tpr, thresholds, p=0):
loss = (fpr - tpr) - p * tpr / (fpr + tpr + 1)
idx = np.argmin(loss, axis=0)
return fpr[idx], tpr[idx], thresholds[idx]
def cal_acc_optimThre(label, pred, pos_label=1):
if type(label) == torch.Tensor:
label = label.detach().cpu().numpy()
if type(pred) == torch.Tensor:
pred = pred.detach().cpu().numpy()
fpr, tpr, thresholds = metrics.roc_curve(label, pred, pos_label=pos_label, drop_intermediate=False)
fpr_optimal, tpr_optimal, threshold_optimal = optimal_thresh(fpr, tpr, thresholds)
pred[pred>threshold_optimal] = 1
pred[pred<threshold_optimal] = 0
acc = np.sum(pred == label) / label.shape[0]
return acc
def cal_acc_optimAccThre(label, pred, pos_label=1):
if type(label) == torch.Tensor:
label = label.detach().cpu().numpy()
if type(pred) == torch.Tensor:
pred = pred.detach().cpu().numpy()
fpr, tpr, thresholds = metrics.roc_curve(label, pred, pos_label=pos_label, drop_intermediate=False)
best_acc = 0
for thre in thresholds:
acc = cal_acc(label, pred, thre)
if acc > best_acc:
best_acc = acc
return best_acc
def cal_TPR_TNR_FPR_FNR(label, pred):
if type(pred) is not torch.Tensor:
pred = torch.from_numpy(pred)
else:
pred = pred.detach().cpu()
if type(label) is not torch.Tensor:
label = torch.from_numpy(label)
else:
label = label.detach().cpu()
pred_logit = pred.round()
pseudo_label_TP = torch.sum(label * pred_logit)
pseudo_label_TN = torch.sum((1 - label) * (1 - pred_logit))
pesudo_label_FP = torch.sum((1 - label) * pred_logit)
pesudo_label_FN = torch.sum(label * (1 - pred_logit))
pseudo_label_TPR = 1.0 * pseudo_label_TP / (label.sum() + 1e-9)
pseudo_label_TNR = 1.0 * pseudo_label_TN / (label.numel() - label.sum() + 1e-9)
pseudo_label_FPR = 1.0 * pesudo_label_FP / (label.numel() - label.sum() + 1e-9)
pseudo_label_FNR = 1.0 * pesudo_label_FN / (label.sum() + 1e-9)
pseudo_label_precision = 1.0 * pseudo_label_TP / (pred_logit.sum() + 1e-9)
pseudo_label_acc = 1.0 * torch.sum(label == pred_logit) / label.numel()
pseudo_label_auc = cal_auc(label, pred)
return [pseudo_label_TPR.item(), pseudo_label_TNR.item(), pseudo_label_FPR.item(), pseudo_label_FNR.item()],\
pseudo_label_acc.item(), pseudo_label_auc
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.val_window = []
self.avg_window = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if len(self.val_window)< 10:
self.val_window.append(self.val)
elif len(self.val_window) == 10:
self.val_window.pop(0)
self.val_window.append(self.val)
else:
print("windows avg ERROR")
self.avg_window = np.array(self.val_window).mean()
# class VisdomLinePlotter(object):
# """Plots to Visdom"""
# def __init__(self, env_name='main'):
# self.viz = Visdom()
# self.env = env_name
# self.plots = {}
# self.scatters = {}
# def plot(self, var_name, split_name, title_name, x, y):
# if var_name not in self.plots:
# self.plots[var_name] = self.viz.line(X=np.array([x,x]), Y=np.array([y,y]), env=self.env, opts=dict(
# legend=[split_name],
# title=title_name,
# xlabel='Epochs',
# ylabel=var_name
# ))
# else:
# self.viz.line(X=np.array([x]), Y=np.array([y]), env=self.env, win=self.plots[var_name], name=split_name, update = 'append')
#
# # def scatter(self, var_name, split_name, title_name, x, size=10):
# # if var_name not in self.scatters:
# # self.scatters[var_name] = self.viz.scatter(X=x.cpu().detach().numpy(), env=self.env, opts=dict(
# # legend=[split_name],
# # title=title_name,
# # markersize=size
# # ))
# # else:
# # self.viz.scatter(X=x.cpu().detach().numpy(), env=self.env, win=self.scatters[var_name], name=split_name, update='replace')
#
# def scatter(self, var_name, split_name, title_name, x, size=10, color=0, symbol='dot'):
# if var_name not in self.scatters:
# if type(x) == torch.Tensor:
# x = x.cpu().detach().numpy()
# self.scatters[var_name] = self.viz.scatter(X=x, env=self.env, opts=dict(
# legend=[split_name],
# title=title_name,
# markersize=size,
# markercolor=color,
# markerborderwidth=0,
# # opacity=0.5
# # markersymbol=symbol,
# # linecolor='white',
# ))
# else:
# if type(x) == torch.Tensor:
# x = x.cpu().detach().numpy()
# self.viz.scatter(X=x, env=self.env, win=self.scatters[var_name], name=split_name, update='replace')
####################################
########### plotly plot ############
def show_3D_imageSlice_plotly(volume):
if type(volume) == torch.Tensor:
volume = volume.detach().cpu().numpy()
r, c = volume[0].shape
# Define frames
import plotly.graph_objects as go
import plotly.io as pio
pio.renderers.default = "browser"
nb_frames = volume.shape[0]
fig = go.Figure(frames=[go.Frame(data=go.Surface(
z=((nb_frames-1)/10 - k * 0.1) * np.ones((r, c)),
surfacecolor=np.flipud(volume[nb_frames-1 - k]),
cmin=0, cmax=200
),
name=str(k) # you need to name the frame for the animation to behave properly
)
for k in range(nb_frames)])
# Add data to be displayed before animation starts
fig.add_trace(go.Surface(
z=(nb_frames-1)/10 * np.ones((r, c)),
surfacecolor=np.flipud(volume[nb_frames-1]),
colorscale='Gray',
cmin=0, cmax=200,
colorbar=dict(thickness=20, ticklen=4)
))
def frame_args(duration):
return {
"frame": {"duration": duration},
"mode": "immediate",
"fromcurrent": True,
"transition": {"duration": duration, "easing": "linear"},
}
sliders = [
{
"pad": {"b": 10, "t": 60},
"len": 0.9,
"x": 0.1,
"y": 0,
"steps": [
{
"args": [[f.name], frame_args(0)],
"label": str(k),
"method": "animate",
}
for k, f in enumerate(fig.frames)
],
}
]
# Layout
fig.update_layout(
title='Slices in volumetric data',
width=600,
height=600,
scene=dict(
zaxis=dict(range=[-0.1, (nb_frames-1)/10], autorange=False),
aspectratio=dict(x=1, y=1, z=1),
),
updatemenus = [
{
"buttons": [
{
"args": [None, frame_args(50)],
"label": "▶", # play symbol
"method": "animate",
},
{
"args": [[None], frame_args(0)],
"label": "◼", # pause symbol
"method": "animate",
},
],
"direction": "left",
"pad": {"r": 10, "t": 70},
"type": "buttons",
"x": 0.1,
"y": 0,
}
],
sliders=sliders
)
fig.show()
def show_3D_volume_plotly(volume, surface_count=17):
import plotly.graph_objects as go
import numpy as np
import plotly.io as pio
pio.renderers.default = "browser"
if type(volume) == torch.Tensor:
volume = volume.detach().cpu().numpy()
X, Y, Z = np.mgrid[0:volume.shape[0], 0:volume.shape[1], 0:volume.shape[2]]
fig = go.Figure(data=go.Volume(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=volume.flatten(),
isomin=0.1,
isomax=0.8,
opacity=0.1, # needs to be small to see through all surfaces
surface_count=surface_count, # needs to be a large number for good volume rendering
))
fig.show()
####################################
####################################
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
####################################
####################################
class Network_Logger(object):
def __init__(self, model):
self.model = model
self.model_grad_dict = {}
self.model_weight_dict = {}
self.model_weightSize_dict = {}
for (i, j) in self.model.named_parameters():
if len(j.shape) > 1:
self.model_grad_dict[i] = []
self.model_weight_dict[i] = [j.abs().mean().item()]
self.model_weightSize_dict[i] = j.shape
def log_grad(self):
for (i, j) in self.model.named_parameters():
if len(j.shape) > 1:
self.model_grad_dict[i].append(j.grad.abs().mean().item())
def log_weight(self):
for (i, j) in self.model.named_parameters():
if len(j.shape) > 1:
self.model_weight_dict[i].append(j.abs().mean().item())
def get_current_weight(self):
current_weight = []
for key in self.model_weight_dict.keys():
current_weight.append(self.model_weight_dict[key][-1])
return current_weight
def get_current_grad(self):
current_grad = []
for key in self.model_grad_dict.keys():
current_grad.append(self.model_grad_dict[key][-1])
return current_grad
def plot_grad(self, layer_idx=None):
# example: layer_idx = [0,1,2] for only first 3 layers
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
if layer_idx is not None:
for idx, key in enumerate(self.model_grad_dict.keys()):
if idx in layer_idx:
ax.plot(self.model_grad_dict[key], label=str(key))
ax.legend()
else:
for idx, key in enumerate(self.model_grad_dict.keys()):
ax.plot(self.model_grad_dict[key], label=str(key))
ax.legend()
def plot_weight(self, layer_idx=None):
# example: layer_idx = [0,1,2] for only first 3 layers
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
if layer_idx is not None:
for idx, key in enumerate(self.model_weight_dict.keys()):
if idx in layer_idx:
ax.plot(self.model_weight_dict[key], label=str(key))
ax.legend()
else:
for idx, key in enumerate(self.model_weight_dict.keys()):
ax.plot(self.model_weight_dict[key], label=str(key))
ax.legend()
####################################
####################################
def show_img(img, save_file_name=''):
if type(img) == torch.Tensor:
img = img.cpu().detach().numpy()
if len(img.shape) == 3: # HxWx3 or 3xHxW, treat as RGB image
if img.shape[0] == 3:
img = img.transpose(1, 2, 0)
fig = plt.figure()
plt.imshow(img)
if save_file_name != '':
plt.savefig(save_file_name, format='svg')
plt.colorbar()
plt.show()
def show_img_multi(img_list, num_col, num_row):
fig = plt.figure()
for idx, img in enumerate(img_list):
if type(img) == torch.Tensor:
img = img.cpu().detach().numpy()
if len(img.shape) == 3: # HxWx3 or 3xHxW, treat as RGB image
if img.shape[0] == 3:
img = img.transpose(1, 2, 0)
ax = fig.add_subplot(num_col, num_row, idx+1)
ax.imshow(img)
plt.show()