-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCLMEF_net_gray.py
141 lines (120 loc) · 4.4 KB
/
CLMEF_net_gray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch.nn as nn
import torch
def default_conv(in_channels, out_channels, kernel_size, bias=True):
return nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias=bias)
class PALayer(nn.Module):
def __init__(self, channel):
super(PALayer, self).__init__()
self.pa = nn.Sequential(
nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(channel // 8, 1, 1, padding=0, bias=True),
nn.Sigmoid()
)
def forward(self, x):
y = self.pa(x)
return x * y
class CALayer(nn.Module):
def __init__(self, channel):
super(CALayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.ca = nn.Sequential(
nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(channel // 8, channel, 1, padding=0, bias=True),
nn.Sigmoid()
)
def forward(self, x):
y = self.avg_pool(x)
y = self.ca(y)
return x * y
class Block(nn.Module):
def __init__(self, conv, dim, kernel_size, ):
super(Block, self).__init__()
self.conv1 = conv(dim, dim, kernel_size, bias=True)
self.act1 = nn.ReLU(inplace=True)
self.conv2 = conv(dim, dim, kernel_size, bias=True)
self.calayer = CALayer(dim)
self.palayer = PALayer(dim)
def forward(self, x):
res = self.act1(self.conv1(x))
res = res + x
res = self.conv2(res)
res = self.calayer(res)
res = self.palayer(res)
res += x
return res
class Group(nn.Module):
def __init__(self, conv, dim, kernel_size, blocks):
super(Group, self).__init__()
modules = [Block(conv, dim, kernel_size) for _ in range(blocks)]
modules.append(conv(dim, dim, kernel_size))
self.gp = nn.Sequential(*modules)
def forward(self, x):
res = self.gp(x)
res += x
return res
class FFA(nn.Module):
def __init__(self, gps, blocks, conv=default_conv):
super(FFA, self).__init__()
self.gps = gps
self.dim = 64
kernel_size = 3
pre_process = [conv(1, self.dim, kernel_size)]
assert self.gps == 3
self.g1 = Group(conv, self.dim, kernel_size, blocks=blocks)
self.g2 = Group(conv, self.dim, kernel_size, blocks=blocks)
self.g3 = Group(conv, self.dim, kernel_size, blocks=blocks)
self.ca = nn.Sequential(*[
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(self.dim * self.gps, self.dim // 16, 1, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(self.dim // 16, self.dim * self.gps, 1, padding=0, bias=True),
nn.Sigmoid()
])
self.palayer = PALayer(self.dim)
post_precess = [
conv(self.dim, self.dim, kernel_size),
conv(self.dim, 1, kernel_size)]
self.pre = nn.Sequential(*pre_process)
self.post = nn.Sequential(*post_precess)
def forward(self, x1):
x = self.pre(x1)
res1 = self.g1(x)
res2 = self.g2(res1)
res3 = self.g3(res2)
w = self.ca(torch.cat([res1, res2, res3], dim=1))
w = w.view(-1, self.gps, self.dim)[:, :, :, None, None]
out = w[:, 0, ::] * res1 + w[:, 1, ::] * res2 + w[:, 2, ::] * res3
out = self.palayer(out)
x = self.post(out)
return x + x1
class Encoder(nn.Module):
"""features extraction"""
def __init__(self):
super(Encoder, self).__init__()
self.FABlock = FFA(gps=3, blocks=1)
def forward(self, x):
x = self.FABlock(x)
return x
class Decoder(nn.Module):
"""features extraction"""
def __init__(self):
super(Decoder, self).__init__()
self.FABlock = FFA(gps=3, blocks=1)
def forward(self, x):
x = self.FABlock(x)
return x
class CLMEFNet(nn.Module):
"""encoder-decoder-based network for self-reconstruction task"""
def __init__(self):
super(CLMEFNet, self).__init__()
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
if __name__ == "__main__":
net = CLMEFNet()
print(net)