
! / Caching

Caching

Context

There are advantages and disadvantages when fetching data from remote storage (e.g.,
buckets). Remote storage offers conveniences, such as easy data sharing between
applica�ons and users. Addi�onally, remote storage is o�en more cost-effec�ve than local
storage for long-term data repositories, which is par�cularly beneficial for large datasets.

Despite these advantages, there are poten�al drawbacks to fetching data from remote
storage. One significant concern is slower data retrieval, which can impact the performance
of your Squirrel applica�on. Retrieving data over a network connec�on introduces addi�onal
latency over accessing data locally. Another factor to consider is the pricing structure
associated with remote storage. Typically, remote storage costs are not solely based on how
long which amount of data is stored but also on the amount of data transferred across the
network and the number of requests made when retrieving the data. Consequently, you may
incur extra costs, especially if you need to fetch a large number of shards across the network
connec�on.

Caching to the Rescue ¶

In Machine Learning workloads, models are o�en trained over mul�ple epochs, meaning you
may need to fetch the same data mul�ple �mes during a run. To op�mize this process,
imagine if you could load the remote data only in the first pass (first epoch), store it locally,
and subsequently access the data from the fast and inexpensive local disk. Precisely this
func�onality is offered through caching.

Squirrel leverages the capabili�es of the fsspec library, which includes a powerful caching
feature out of the box. Each default Squirrel Driver such as DataFrameDriver , FileDriver ,
or StoreDriver accepts a storage_options argument, which is a dic�onary passed down to
the fsspec filesystem. This dic�onary allows you to configure caching, among other things.
For more detailed informa�on, please refer to the fsspec documenta�on on local caching.

The code below shows an example of configuring caching for several drivers. Note that, as
per the fsspec documenta�on, only simplecache is “guaranteed thread/process-safe”.

from squirrel.driver import CsvDriver, FileDriver, MessagepackDriver

so = {"protocol": "simplecache", "target_protocol": "gs", "cache_storage":
"/tmp/cache"}

CsvDriver("gs://bucket/data.csv", engine="pandas", storage_options=so) # inherits
from DataFrameDriver
MessagepackDriver("gs://bucket/data-dir", storage_options=so) # inherits from
StoreDriver
FileDriver("gs://bucket/file.txt", storage_options=so)

Let’s observe the performance benefits of caching in ac�on. The below code compares the
performance of a MessagepackDriver with and without caching. The generated plot shows
that the non-cached driver has a similar loading speed for all epochs. However, the cached
driver stores the data on the local disk in the first epoch and reads it from the local disk in the
subsequent epochs, making it much faster than the non-cached driver.

import time
import typing as t

import matplotlib.pyplot as plt
import seaborn as sns
from pandas import DataFrame
from squirrel.driver import MessagepackDriver

remote_path = "gs://mxm-safetrain-data/msgpack-cache-demo-data"
so = {"protocol": "simplecache", "target_protocol": "gs", "cache_storage":
"/tmp/cache"}

driver_types = {
 "Caching": lambda: MessagepackDriver(remote_path, storage_options=so),
 "No Caching": lambda: MessagepackDriver(remote_path),
}

def time_epoch(driver_init: t.Callable[[], MessagepackDriver]) -> float:
 """Creates iterator and returns time to fetch all shards."""
 it = driver_init().get_iter().tqdm()
 start = time.time()
 it.join()
 return time.time() - start

def benchmark(driver_types: t.Dict[str, t.Any], num_epochs: int = 10) -> DataFrame:
 """Benchmarks loading speed of the `driver_types` over `num_epochs` epochs."""
 df = DataFrame()
 for k, v in driver_types.items():
 for i in range(num_epochs):
 data = {"Epoch": i + 1, "Time (in s)": time_epoch(driver_init=v), "Driver
Type": k}
 df = df.append(data, ignore_index=True)
 return df

df = benchmark(driver_types)

sns.set_theme(style="darkgrid")
sns.set_palette(["#9E36FF", "#11D8C1"]) # company colors

ax = sns.barplot(data=df, x="Epoch", y="Time (in s)", hue="Driver Type")
ax.set(title="Loading 2 shards (~ 100MB each) via MessagepackDriver")
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))

plt.savefig("advanced/msgpack_caching.svg", bbox_inches="tight")

Storage Options and Catalogs

When using the Catalog -API, some users will have wri�en some storage_options to the
catalog (e.g., that their Google Cloud Service (GCS) bucket is requester_pays=True). As a new
user, you might now want to provide addi�onal storage_options (e.g., for caching). As shown
below in the code, you can do so when you call get_driver() on the CatalogSource . Squirrel
ensures that the new storage_options passed to get_driver() are merged with the pre-
exis�ng storage_options .

from squirrel.catalog import Catalog, Source

user 1 creates a catalog, saves it, and shares it with user 2
cat = Catalog()
cat["source"] = Source(
 "csv",
 driver_kwargs={
 "url": "gs://some-bucket/test.csv",
 "storage_options": {"requester_pays": True},
 },
)
cat.to_file("catalog.yaml")

user 2 loads catalog from file and inserts their storage_options
cat = Catalog.from_files(["catalog.yaml"])
driver = cat["source"].get_driver(
 storage_options={
 "protocol": "simplecache",
 "target_protocol": "gs",
 "cache_storage": "/tmp/cache",
 }
)

storage_options from user 1 and user 2 are merged
assert driver.storage_options == {
 "requester_pays": True,
 "protocol": "simplecache",
 "target_protocol": "gs",
 "cache_storage": "/tmp/cache",
}

