-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnusc_api.py
969 lines (865 loc) · 42.8 KB
/
nusc_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
from nuscenes.nuscenes import NuScenes, NuScenesExplorer
from nuscenes.map_expansion.map_api import NuScenesMap
from nuscenes.map_expansion import arcline_path_utils
import os
import time
import pickle
import os.path as osp
import numpy as np
import torch
from nuscenes.utils.map_mask import MapMask
from nuscenes.utils.color_map import get_colormap
from utils import euler_from_quaternion, compute_entropy, to_np
from scipy.spatial import ConvexHull
class NuscenesPkl(NuScenes):
def __init__(self, version: str = 'v1.0-mini',
dataroot: str = '/data/sets/nuscenes',
verbose: bool = True,
map_resolution: float = 0.1):
"""
Loads database and creates reverse indexes and shortcuts.
:param version: Version to load (e.g. "v1.0", ...).
:param dataroot: Path to the tables and data.
:param verbose: Whether to print status messages during load.
:param map_resolution: Resolution of maps (meters).
"""
self.version = version
self.dataroot = dataroot
self.verbose = verbose
self.table_names = ['category', 'attribute', 'visibility', 'instance', 'sensor', 'calibrated_sensor',
'ego_pose', 'log', 'scene', 'sample', 'sample_data', 'sample_annotation', 'map']
assert osp.exists(self.table_root), 'Database version not found: {}'.format(self.table_root)
start_time = time.time()
if verbose:
print("======\nLoading NuScenes tables for version {}...".format(self.version))
pkl_file_path = osp.join(self.table_root, 'all_data.pickle')
if osp.exists(pkl_file_path)==False:
# Explicitly assign tables to help the IDE determine valid class members.
self.category = self.__load_table__('category')
self.attribute = self.__load_table__('attribute')
self.visibility = self.__load_table__('visibility')
self.instance = self.__load_table__('instance')
self.sensor = self.__load_table__('sensor')
self.calibrated_sensor = self.__load_table__('calibrated_sensor')
self.ego_pose = self.__load_table__('ego_pose')
self.log = self.__load_table__('log')
self.scene = self.__load_table__('scene')
self.sample = self.__load_table__('sample')
self.sample_data = self.__load_table__('sample_data')
self.sample_annotation = self.__load_table__('sample_annotation')
self.map = self.__load_table__('map')
# Initialize the colormap which maps from class names to RGB values.
self.colormap = get_colormap()
# Initialize map mask for each map record.
for map_record in self.map:
map_record['mask'] = MapMask(osp.join(self.dataroot, map_record['filename']), resolution=map_resolution)
if verbose:
for table in self.table_names:
print("{} {},".format(len(getattr(self, table)), table))
print("Done loading in {:.3f} seconds.\n======".format(time.time() - start_time))
# Make reverse indexes for common lookups.
self.__make_reverse_index__(verbose)
# TODO(yue)
all_dict = {}
for table in self.table_names + ["_token2ind"]:
all_dict[table] = getattr(self, table)
with open(pkl_file_path, "wb") as ff:
pickle.dump(all_dict, ff, pickle.HIGHEST_PROTOCOL)
else:
with open(pkl_file_path, "rb") as ff:
all_dict = pickle.load(ff)
for table in self.table_names + ["_token2ind"]:
setattr(self, table, all_dict[table])
self.colormap = get_colormap()
if verbose:
for table in self.table_names:
print("{} {},".format(len(getattr(self, table)), table))
print("Done loading in {:.3f} seconds.\n======".format(time.time() - start_time))
# Initialize NuScenesExplorer class.
self.explorer = NuScenesExplorer(self)
def get_nuscenes(is_mini=False, queue=None):
dataroot=os.environ["MY_DATA_DIR"]
if len(dataroot)<1:
exit("CANNOT FIND ENV VARIABLE:%s"%(dataroot))
else:
dataroot=os.path.join(dataroot, "nuscenes")
if is_mini:
nusc = NuScenes(version='v1.0-mini', dataroot=dataroot, verbose=True)
else:
nusc = NuscenesPkl(version='v1.0-trainval', dataroot=dataroot, verbose=True)
nusc_map_d={k: NuScenesMap(dataroot=dataroot, map_name=k) for k in \
["boston-seaport", "singapore-hollandvillage", "singapore-queenstown", "singapore-onenorth"]}
if queue is not None:
queue.put((nusc, nusc_map_d))
return
else:
return nusc, nusc_map_d
# get all the sample_tokens for each scene,
# from all the scenes in the nusc dataset
def get_scene_tokens(nusc):
meta_list = []
for i, scene in enumerate(nusc.scene):
tokens=[]
sample_token = scene["first_sample_token"]
while sample_token != "":
tokens.append(sample_token)
sample_token = nusc.get("sample", sample_token)["next"]
meta_list.append((i, tokens))
return meta_list
# get ego pose
# the speed v_t is estimated from s_t, and s_{t+1}
# the last speed v_t will be v_{t-1} + (v_{t-1} - v_{t-2})/dt * dt
def get_ego_trajectory(nusc, tokens, dt, return_numpy=False):
ego_trajs = []
for ti, token in enumerate(tokens):
sample = nusc.get("sample", token)
ego_state = get_ego_state_from_sample(nusc, sample)
ego_trajs.append(ego_state)
ego_trajs = torch.stack(ego_trajs, dim=0)
# add the velocity estimates
v = torch.norm(ego_trajs[1:, :2]-ego_trajs[:-1, :2], dim=-1) / dt
if v.shape[0]==1:
v = torch.cat([v, v], dim=0)
else:
v_last = v[-1:] * 2 - v[-2:-1]
v = torch.cat([v, v_last], dim=0)
ego_trajs = torch.cat([ego_trajs[:, :3], v.unsqueeze(-1), ego_trajs[:, 3:]], dim=-1)
if return_numpy:
return ego_trajs.numpy()
else:
return ego_trajs
# get neighbors
# TODO: for now, only focus on current frame,
# and constant speed neighbors prediction
def get_neighbors(nusc, token, ret_full=False):
sample = nusc.get("sample", token)
neighbors = []
ann_tokens = []
for ann_token in sample["anns"]:
ann = nusc.get("sample_annotation", ann_token)
if "vehicle" in ann["category_name"]:
nei_state = get_nei_state_from_annotation(nusc, ann)
neighbors.append(nei_state)
ann_tokens.append(ann_token)
if ret_full:
return neighbors, ann_tokens
else:
return neighbors
# used only for nuscenes record
# they seems to have a weird format for heading angle def
# numpy input/output
def get_th_from_rotation(rotation):
return np.pi - euler_from_quaternion(rotation)[0]
# get the difference measure for two angles in [-inf, inf]
# input numpy, two angles
# output range [0, 1]
# 0 ~ similar, or 2k pi
# 1 ~ largest difference (2k+1)pi diff
def angle_diff(a, b):
return 1/2*(1-np.cos(a-b))
# compute the trajectory length
# input: (n, 2+n>=0)
# return: 1
def compute_traj_len(trajs):
trajs_np = np.array(trajs)
return np.sum(np.linalg.norm(trajs_np[1:, :2] - trajs_np[:-1, :2], axis=-1))
def get_traj_len_np(traj: np.ndarray):
return np.sum(np.linalg.norm(traj[1:,:2]-traj[:-1,:2], axis=-1))
#################
# important API #
#################
def get_closest_centerlane_with_heuristcs(nusc, nusc_map, x, y, radius, trajs, n_expands, n_segs, lanes_cut=False):
lanes = nusc_map.get_records_in_radius(x, y, radius, ['lane', 'lane_connector'])
lanes = lanes['lane'] + lanes['lane_connector']
discrete_points = nusc_map.discretize_lanes(lanes, 0.5)
current_min = np.inf
min_check_head_dist=None
min_id = ""
min_state_dict_i = None
# first find the closed one based on metrics
for lane_id, points_3d in discrete_points.items():
points_3d_np = np.array(points_3d)
points = np.array(points_3d)[:, :2]
state_dist_all = np.linalg.norm(points - [x, y], axis=1).min()
state_dist = state_dist_all.min()
state_dist_i = state_dist_all.argmin()
traj_dist = np.linalg.norm(points[None, :] - trajs[:5, None, :2], axis=2).min(axis=1).mean()
head_dist = angle_diff(trajs[0, 2], points_3d_np[state_dist_i, 2])
total_score = state_dist + traj_dist + head_dist
if total_score < current_min:
current_min = total_score
min_id = lane_id
min_check_head_dist = head_dist
min_poses = points_3d_np
min_state_dict_i = state_dist_i
# remove the case when the heading is very far from the lane direction
if min_id != "" and min_check_head_dist > 0.8:
min_id = ""
# then expand a bit
if min_id != "":
# make sure the starting point is very close to the ego vehicle
if lanes_cut:
min_poses = min_poses[max(0, min_state_dict_i-5):]
total_traj_len = compute_traj_len(trajs)
curr_lane_len = compute_traj_len(min_poses)
lane_id_list = [min_id]
lane_poses_list = [min_poses]
for expand_i in range(n_expands):
lane_id = lane_id_list[-1]
lane_poses = lane_poses_list[-1]
outs = nusc_map.get_outgoing_lane_ids(lane_id)
next_ones = []
for out_id in outs:
arcline_path = nusc_map.arcline_path_3.get(out_id)
if arcline_path:
out_record = arcline_path
out_poses = arcline_path_utils.discretize_lane(out_record, resolution_meters=0.5)
dist_error = np.linalg.norm(np.array(out_poses[0][:2])-np.array(lane_poses[-1][:2]))
head_error = angle_diff(out_poses[0][2], lane_poses[-1][2])
next_ones.append((dist_error + head_error, (out_id, out_poses)))
if len(next_ones)==0:
break
next_ones = sorted(next_ones, key = lambda x:x[0])
nextlane_id, nextlane_poses = next_ones[0][1]
lane_id_list.append(nextlane_id)
lane_poses_list.append(nextlane_poses)
curr_lane_len += compute_traj_len(nextlane_poses)
if curr_lane_len > total_traj_len + 10:
break
lane_poses_list = [np.array(lane_poses) for lane_poses in lane_poses_list]
centerlane_poses_full = np.concatenate(lane_poses_list, axis=0)
numElems = n_segs
sub_poses_list = []
for lane_poses in lane_poses_list:
evenspace_idx = np.round(np.linspace(0, lane_poses.shape[0] - 1, numElems)).astype(int)
sub_poses = lane_poses[evenspace_idx]
sub_poses_list.append(sub_poses)
sub_poses_full = np.concatenate(sub_poses_list, axis=0)
evenspace_idx = np.round(np.linspace(0, sub_poses_full.shape[0] - 1, numElems)).astype(int)
centerlane_poses = sub_poses_full[evenspace_idx]
else:
centerlane_poses = np.zeros((n_segs, 2))
min_poses = np.zeros((n_segs, 2))
return min_id, centerlane_poses, min_poses
def is_able_uturn(nusc_map, ego_state, currlane_wpts, testlane_wpts):
valid_uturn=False
if np.cos(testlane_wpts[0, -1] - currlane_wpts[0, -1]) < -0.9: # (this almost opposite)
valid_uturn=True
# checking speed
if ego_state[3] > 3:
valid_uturn = False
# checking lane-to-lane distance
dist = np.linalg.norm(testlane_wpts[0, :2]-currlane_wpts[0, :2])
if dist > 8:
valid_uturn = False
# checking whether there is hole in front
# between curr lane and adj lane
# in front 4, 5, 6, 7, 8 meters
# if no whole, then avail to u-turn
mid = (testlane_wpts[0, :2] + currlane_wpts[0, :2])/2
theta = currlane_wpts[0, 2]
for test_d in [4, 6, 8]:
test_point = np.array([mid[0] + test_d * np.cos(theta), mid[1] + test_d * np.sin(theta)])
if check_drive_availability(nusc_map, test_point)==False:
# print("there is hole at", test_point)
valid_uturn = False
break
return valid_uturn
def check_drive_availability(nusc_map, point):
layers = nusc_map.explorer.layers_on_point(point[0], point[1])
return layers["drivable_area"]!=""
def find_start_and_end_lane_idx_for_traj(lane, traj, minimum_consider_len):
# lane (M, 3)
# traj (N, 2)
t2l_dist = np.linalg.norm(lane[:, :2] - traj[0:1, :2], axis=-1)
begin_idx = np.argmin(t2l_dist)
compared_len = max(minimum_consider_len, get_traj_len_np(traj))
frag_length = np.linalg.norm(lane[1:,:2]-lane[:-1,:2], axis=-1) # (n-1, )
frag_length = np.concatenate((np.zeros((1,)), frag_length))
frag_cumsum = np.cumsum(frag_length)
if np.all(frag_cumsum - frag_cumsum[begin_idx]<compared_len):
end_idx = lane.shape[0]-1
else:
end_idx = np.argmax(frag_cumsum - frag_cumsum[begin_idx]>=compared_len)
info = {"t2l_dist": t2l_dist}
return begin_idx, end_idx, info
def get_centerline_from_anno(nusc: NuScenes, nusc_map: NuScenesMap, keyframe, lane_key, radius, ego_trajs, n_expands, n_segs, highlevel):
DIST_THRES = 7.0
LANE_WIDTH = 4.0
MINIMUM_CONSIDER_LEN = 20.0
records = keyframe["lanes"][lane_key]
pts_anno = [pts for li, (_, _, pts) in enumerate(records)]
ids_anno = [li * np.ones_like(pts[:,0]) for li, (_, _, pts) in enumerate(records)]
if len(pts_anno)!=0:
pts_anno = np.concatenate(pts_anno, axis=0)
ids_anno = np.concatenate(ids_anno, axis=0)
compared_len = max(MINIMUM_CONSIDER_LEN, get_traj_len_np(ego_trajs))
begin_idx, end_idx, info = find_start_and_end_lane_idx_for_traj(pts_anno, ego_trajs, MINIMUM_CONSIDER_LEN)
min_id = records[int(ids_anno[begin_idx])][1]
lane_full = pts_anno[begin_idx:end_idx+1]
evenspace_idx = np.round(np.linspace(0, lane_full.shape[0] - 1, n_segs)).astype(int)
lane_wpts = lane_full[evenspace_idx]
else:
min_id = ''
lane_full = lane_wpts = np.zeros((n_segs, 3))
if lane_key=="curr": # the current solution might be too short for some case at the end of the trajectories
curr_lane_len = get_traj_len_np(lane_full) if min_id!="" else MINIMUM_CONSIDER_LEN+1
if curr_lane_len < MINIMUM_CONSIDER_LEN:
lane_full = pts_anno[begin_idx:]
total_traj_len = MINIMUM_CONSIDER_LEN
lane_id_list = [min_id]
lane_poses_list = [lane_full]
for expand_i in range(n_expands):
lane_id = lane_id_list[-1]
lane_poses = lane_poses_list[-1]
outs = nusc_map.get_outgoing_lane_ids(lane_id)
next_ones = []
for out_id in outs:
arcline_path = nusc_map.arcline_path_3.get(out_id)
if arcline_path:
out_poses = arcline_path_utils.discretize_lane(arcline_path, resolution_meters=0.5)
dist_error = np.linalg.norm(np.array(out_poses[0][:2])-np.array(lane_poses[-1][:2]))
head_error = angle_diff(out_poses[0][2], lane_poses[-1][2])
next_ones.append((dist_error + head_error, (out_id, np.array(out_poses))))
if len(next_ones)==0:
break
next_ones = sorted(next_ones, key = lambda x:x[0])
nextlane_id, nextlane_poses = next_ones[0][1]
lane_id_list.append(nextlane_id)
lane_poses_list.append(nextlane_poses)
curr_lane_len += get_traj_len_np(nextlane_poses)
if curr_lane_len > total_traj_len:
break
lane_full = np.concatenate(lane_poses_list, axis=0)
evenspace_idx = np.round(np.linspace(0, lane_full.shape[0] - 1, n_segs)).astype(int)
lane_wpts = lane_full[evenspace_idx]
curr_lane_len = get_traj_len_np(lane_full)
else:
# first make sure not in the intersection
x, y, th = ego_trajs[0, 0:3]
layers = nusc_map.explorer.layers_on_point(x, y)
if (lane_key=='left' and highlevel==1) or (lane_key=='right' and highlevel==2):
is_intersection = False
else:
segment_token = layers['road_segment']
if segment_token=="":
is_intersection = False
else:
is_intersection = nusc_map.get("road_segment", segment_token)['is_intersection']
if is_intersection:
min_id = ""
lane_full = lane_wpts = np.zeros((n_segs, 3))
prev_min_id = min_id
min_pts_lane_dist = info["t2l_dist"][begin_idx] if prev_min_id!='' else DIST_THRES
if min_pts_lane_dist >= DIST_THRES: # if too far from the left/right centerline
# should find new centerline
min_id = ""
lane_full = lane_wpts = np.zeros((n_segs, 3))
if not is_intersection:
# find closest left/right
# using the old method to find one
if lane_key == "left":
new_x = x + LANE_WIDTH * np.cos(th+np.pi/2)
new_y = y + LANE_WIDTH * np.sin(th+np.pi/2)
else:
new_x = x + LANE_WIDTH * np.cos(th-np.pi/2)
new_y = y + LANE_WIDTH * np.sin(th-np.pi/2)
lanes = nusc_map.get_records_in_radius(new_x, new_y, radius, ['lane', 'lane_connector'])
lanes = lanes['lane'] + lanes['lane_connector']
discrete_points = nusc_map.discretize_lanes(lanes, 0.5)
# first find the closed one based on metrics
current_min=min_pts_lane_dist
for lane_id, points_3d in discrete_points.items():
if lane_id != prev_min_id: # should not be the same as the previous lane
points_3d_np = np.array(points_3d)
points = points_3d_np[:, :2]
state_dist_all = np.linalg.norm(points - [new_x, new_y], axis=1)
state_dist_i = state_dist_all.argmin()
state_dist = state_dist_all[state_dist_i]
total_score = state_dist
if total_score < current_min:
current_min = total_score
min_id = lane_id
min_poses = points_3d_np
min_state_dict_i = state_dist_i
if min_id != "":
# make sure the starting point is very close to the ego vehicle
# and make sure the lane is different from the current lane
min_poses = min_poses[min_state_dict_i:]
total_traj_len = get_traj_len_np(ego_trajs)
curr_lane_len = get_traj_len_np(min_poses)
lane_id_list = [min_id]
lane_poses_list = [min_poses]
if curr_lane_len > total_traj_len:
begin_idx, end_idx, info = find_start_and_end_lane_idx_for_traj(min_poses, ego_trajs, MINIMUM_CONSIDER_LEN)
lane_poses_list = [min_poses[begin_idx:end_idx+1]]
else:
for expand_i in range(n_expands):
lane_id = lane_id_list[-1]
lane_poses = lane_poses_list[-1]
outs = nusc_map.get_outgoing_lane_ids(lane_id)
next_ones = []
for out_id in outs:
arcline_path = nusc_map.arcline_path_3.get(out_id)
if arcline_path:
out_poses = arcline_path_utils.discretize_lane(arcline_path, resolution_meters=0.5)
dist_error = np.linalg.norm(np.array(out_poses[0][:2])-np.array(lane_poses[-1][:2]))
head_error = angle_diff(out_poses[0][2], lane_poses[-1][2])
next_ones.append((dist_error + head_error, (out_id, np.array(out_poses))))
if len(next_ones)==0:
break
next_ones = sorted(next_ones, key = lambda x:x[0])
nextlane_id, nextlane_poses = next_ones[0][1]
lane_id_list.append(nextlane_id)
lane_poses_list.append(nextlane_poses)
curr_lane_len += get_traj_len_np(nextlane_poses)
if curr_lane_len > total_traj_len:
break
lane_full = np.concatenate(lane_poses_list, axis=0)
evenspace_idx = np.round(np.linspace(0, lane_full.shape[0] - 1, n_segs)).astype(int)
lane_wpts = lane_full[evenspace_idx]
if min_id == "":
min_id = -1
return min_id, lane_wpts, lane_full
# compute the distance of two trajectories
# input: (n1, 2), (n2, 2)
# return: ()
def traj_diff(lane_a, lane_b):
a = np.array(lane_a)[:, :2]
b = np.array(lane_b)[:, :2]
d = np.linalg.norm(a[None]-b[:,None], axis=-1)
matched_ratio = np.mean(np.min(d,axis=0) < 2.0)
return matched_ratio
def compute_traj_diff(lane_a, lane_b):
a = np.array(lane_a)[:, :2]
b = np.array(lane_b)[:, :2]
d = np.linalg.norm(a[None]-b[:,None], axis=-1)
dist_a_to_b = np.mean(np.min(d,axis=0))
dist_b_to_a = np.mean(np.min(d,axis=1))
return min(dist_b_to_a, dist_a_to_b)
# get centerlines
# select to use annotation, or pure heuristic, or simplified lane model, or other paper used methods
# make this adapt to the nuscene-gui
def get_centerlines(nusc, nusc_map, token, ti, ego_trajs, anno_data, n_expands, n_segs, lanes_cut=False, ret_full=False, highlevel=0):
radius = 2
LANE_WIDTH = 4.0
ego_state = ego_trajs[0]
x, y, ego_th = ego_state[0:3]
if len(anno_data)>1:
keys = sorted(anno_data)
for k_i, key in enumerate(keys):
if ti>=key and (k_i==len(keys)-1 or ti<keys[k_i+1]):
break
keyframe = anno_data[key]
else:
keyframe = anno_data[0]
curr_id, currlane_wpts, currlane_full = get_centerline_from_anno(nusc, nusc_map, keyframe, "curr", radius, ego_trajs, n_expands, n_segs, highlevel=highlevel)
left_id, leftlane_wpts, leftlane_full = get_centerline_from_anno(nusc, nusc_map, keyframe, "left", radius, ego_trajs, n_expands, n_segs, highlevel=highlevel)
right_id, rightlane_wpts, rightlane_full = get_centerline_from_anno(nusc, nusc_map, keyframe, "right", radius, ego_trajs, n_expands, n_segs, highlevel=highlevel)
if left_id == curr_id or compute_traj_diff(currlane_full, leftlane_full) < 0.5:
leftlane_wpts = leftlane_full = leftlane_wpts * 0
left_id = -1
if right_id == curr_id or compute_traj_diff(currlane_full, rightlane_full) < 0.5:
rightlane_wpts = rightlane_full = rightlane_wpts * 0
right_id = -1
# TODO(yue)
# each returns a full lengths of the centerline (len(road), 3)
# and then finegrained/fixed-length roads is handled elsewhere
if ret_full:
return curr_id, currlane_wpts, currlane_full, \
left_id, leftlane_wpts, leftlane_full, \
right_id, rightlane_wpts,rightlane_full
else:
return currlane_wpts, leftlane_wpts, rightlane_wpts
# get high-level behaviors
# TODO this way of getting high-level behaviors need to be re-examined
def get_high_level_behaviors(nusc, anno_data, ti, nt, buffer, ego_traj_np):
inv_d = {"Lane-keeping":0., None:0., "Left-lane-change":1., "Right-lane-change":2., "Stop sign":3., "Traffic light":3.}
if len(anno_data)==1:
gt_high_level = inv_d[anno_data[0]["high_level"]]
elif len(anno_data)==2:
switch_t = sorted(list(anno_data.keys()))[1]
if ti<switch_t:
if ti+nt < switch_t: # if the label is not included in the interval
gt_high_level = 0
else: # the label is included in the interval
gt_high_level = inv_d[anno_data[0]["high_level"]]
else: # after the switching
gt_high_level = inv_d[anno_data[switch_t]["high_level"]]
elif len(anno_data)==3:
switch_t = sorted(list(anno_data.keys()))[1]
switch_t2 = sorted(list(anno_data.keys()))[2]
if ti<switch_t:
if ti+nt < switch_t: # if the label is not included in the interval
gt_high_level = 0
else: # the label is included in the interval
gt_high_level = inv_d[anno_data[0]["high_level"]]
elif ti<switch_t2: # after the switching
if ti+nt < switch_t2:
gt_high_level = 0
else:
gt_high_level = inv_d[anno_data[switch_t]["high_level"]]
else:
gt_high_level = inv_d[anno_data[switch_t2]["high_level"]]
else:
raise NotImplementedError
return torch.tensor([gt_high_level]).float()
# get the ego state info from the nuscenes sample
def get_ego_state_from_sample(nusc, sample):
lidar_data = nusc.get("sample_data", sample['data']["LIDAR_TOP"])
ego_pose = nusc.get("ego_pose", lidar_data["ego_pose_token"])
ego_xy = ego_pose["translation"]
ego_euler = euler_from_quaternion(ego_pose["rotation"])
ego_th = get_th_from_rotation(ego_pose["rotation"])
# TODO this is hardcoded now
ego_L = 4.0
ego_W = 2.0
return torch.tensor([ego_xy[0], ego_xy[1], ego_th, ego_L, ego_W]).float()
def get_nei_state_from_annotation(nusc, ann):
other_rot = ann["rotation"]
other_pose = ann["translation"]
other_th = get_th_from_rotation(ann["rotation"])
other_v = get_v_diff_for_annotation(nusc, ann)
other_L = ann["size"][1]
other_W = ann["size"][0]
return torch.tensor([other_pose[0], other_pose[1], other_th, other_v, other_L, other_W]).float()
# compute the velocity profile from the annotation record
# use previous, or (if unavailable) next frame info and
# compute the time diff
def get_v_diff_for_annotation(nusc, ann):
ann_token = ann["sample_token"]
prev_token = ann['prev']
next_token = ann['next']
if prev_token != "":
# check on prev
prev = nusc.get("sample_annotation", prev_token)
current_time = 1e-6 * nusc.get('sample', ann_token)['timestamp']
prev_time = 1e-6 * nusc.get('sample', prev["sample_token"])['timestamp']
time_diff = current_time - prev_time
diff = (np.array(ann['translation']) - np.array(prev['translation'])) / time_diff
velocity = np.linalg.norm(diff[:2])
elif next_token != "":
# check on future
next0 = nusc.get("sample_annotation", next_token)
current_time = 1e-6 * nusc.get('sample', ann_token)['timestamp']
next_time = 1e-6 * nusc.get('sample', next0["sample_token"])['timestamp']
time_diff = next_time - current_time
diff = (np.array(next0['translation']) - np.array(ann['translation'])) / time_diff
velocity = np.linalg.norm(diff[:2])
else:
# if both None, return zero velocity
velocity = 0
return velocity
# get k nearest neighbors
def get_nearest_neighbors(nusc, token, ego_state: torch.Tensor, k, ret_full=False):
neighbors, ann_tokens = get_neighbors(nusc, token, ret_full=True) # return a list of tensors
nearest_neighbors = torch.zeros((k, 7)) # (valid, x, y, th, v, L, W)
nearest_ann_tokens = []
if len(neighbors)>0:
neighbors = torch.stack(neighbors, dim=0)
dist = torch.norm(ego_state.unsqueeze(0)[:, :2] - neighbors[:, :2], dim=-1)
arg_idx = torch.argsort(dist)[:k]
nearest_neighbors[:len(arg_idx), :1] = 1
nearest_neighbors[:len(arg_idx), 1:] = neighbors[arg_idx, :]
nearest_ann_tokens = [ann_tokens[iii] for iii in arg_idx]
if ret_full:
return nearest_neighbors, nearest_ann_tokens
else:
return nearest_neighbors
# first find those annotations to locate those instances;
# then for each timestep for the sample,
# first find all the instances per step that
# have the annotation then for the rest,
# either linear interp, or extrapolate;
def get_neighbor_trajectories(nusc, token, tokens, ego_state: torch.Tensor, k, dt, nearest_ann_tokens=None):
if nearest_ann_tokens is None:
_, nearest_ann_tokens = get_nearest_neighbors(nusc, token, ego_state, k, ret_full=True)
nt = len(tokens)
token_2_ti_d = {tok:ti for ti, tok in enumerate(tokens)}
all_trajs = torch.zeros(k, nt, 7)
all_trajs_idx = torch.zeros(k, nt)
for a_i, ann_token in enumerate(nearest_ann_tokens):
if ann_token!="":
ann = nusc.get("sample_annotation", ann_token)
track_list = [None for _ in range(nt)]
cur_ann_token = ann_token
while cur_ann_token != "":
cur_ann = nusc.get("sample_annotation", cur_ann_token)
nei_state = get_nei_state_from_annotation(nusc, cur_ann)
# sync with sample
corr_sample_token = cur_ann["sample_token"]
if corr_sample_token not in token_2_ti_d:
break
else:
ti = token_2_ti_d[corr_sample_token]
track_list[ti] = nei_state
cur_ann_token = cur_ann["next"]
# interpolate or extrapolate the rest
valid_idx = [i for i in range(len(track_list)) if track_list[i] is not None]
for i in range(len(valid_idx)-1):
begin_idx = valid_idx[i]
end_idx = valid_idx[i+1]
# consider all the holes in between
for j in range(begin_idx+1, end_idx):
weight = (j - begin_idx) / (end_idx - begin_idx)
track_list[j] = track_list[begin_idx] * weight + track_list[end_idx] * (1-weight)
all_trajs_idx[a_i, valid_idx] = 1
# extrapolate the rest states assume constant velocity
if valid_idx[-1] != nt - 1:
begin_idx = valid_idx[-1]
x, y, th, v, L, W = track_list[valid_idx[-1]]
for j in range(begin_idx+1, nt):
new_x = x + v * torch.cos(th) * dt
new_y = y + v * torch.sin(th) * dt
new_v = v
new_th = th
track_list[j] = torch.tensor([new_x, new_y, new_th, new_v, L, W]).float()
x, y, th, v, L, W = track_list[j]
track_list = torch.stack(track_list, dim=0)
all_trajs[a_i, :, 1:] = track_list
all_trajs[a_i, :, 0] = 1.0
return all_trajs, all_trajs_idx
def compute_t2l_dist(points, lanes, clip=False, reduced_seg=None, with_angle=False, inline=False):
# points (N, T, 2)
# lanes (N, T, nseg, 2)
efficient = True
if efficient:
# points (N, T, 2/3)
# lanes (N, nseg, 2/3)
newlanes = lanes[:, None, :, :]
n, n_segs, lane_dim = lanes.shape
t = points.shape[1]
if with_angle:
ndim = 3
else:
ndim = 2
# points (n, t, 2)
# lanes (n, 1, nseg, 2)
point_dist = torch.norm(points[..., None, :2] - newlanes[..., :2], dim=-1) # (n, t, nseg)
min_idx = torch.argmin(point_dist[:, :, :-1] + point_dist[:, :, 1:], dim=2) # (n, t)
min_idx2 = min_idx.unsqueeze(-1).repeat(1, 1, ndim) # (n, t, 3)
p2 = torch.gather(lanes, dim=1, index=min_idx2)#.squeeze(1)
p3 = torch.gather(lanes, dim=1, index=min_idx2+1)#.squeeze(1)
x1, y1 = points[..., 0], points[..., 1]
x2, y2 = p2[..., 0], p2[..., 1]
x3, y3 = p3[..., 0], p3[..., 1]
area = x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)
bottom_l = torch.norm((p2 - p3)[..., :2], dim=-1)
l2_dist = (torch.clamp((x1-x2)**2+(y1-y2)**2, 1e-3))**0.5
normal_case = (bottom_l!=0).float()
if inline:
dist_to_lane = normal_case * area / torch.clip(bottom_l,1e-7) + (1-normal_case) * l2_dist
l2_dist1 = (torch.clamp((x1-x3)**2+(y1-y3)**2, 1e-3))**0.5
behind = (x1 - x2) * (x3 - x2) + (y1 - y2) * (y3 - y2) <= 0
ahead = (x1 - x3) * (x2 - x3) + (y1 - y3) * (y2 - y3) <= 0
behind_all = torch.logical_and(min_idx==0, behind)
ahead_all = torch.logical_and(min_idx==n_segs-2, ahead)
normal = torch.logical_not(torch.logical_or(behind_all, ahead_all))
dist = normal * dist_to_lane + behind_all * l2_dist * torch.sign(dist_to_lane) + ahead_all * l2_dist1 * torch.sign(dist_to_lane)
else:
dist = normal_case * area / torch.clip(bottom_l,1e-7) + (1-normal_case) * l2_dist
if with_angle:
lane_head = p2[..., 2]
traj_head = points[..., 2]
angle_dist = 1 - torch.cos(lane_head - traj_head)
if clip:
return torch.clip(dist.reshape(n, t), -5, 5), angle_dist.reshape(n, t)
else:
return dist.reshape(n, t), angle_dist.reshape(n, t)
if clip:
return torch.clip(dist.reshape(n, t), -5, 5)
else:
return dist.reshape(n, t)
else:
n, _, n_segs, lane_dim = lanes.shape
t = points.shape[1]
assert lane_dim in [2, 3]
if with_angle:
points_flat = points.reshape([n*t, 1, 3]) # (n*t, 1, 3)
lanes_flat = lanes[..., :3].reshape([n*t, n_segs, 3]) # (n*t, nseg, 3)
point_dist = torch.norm(points_flat[..., :2] - lanes_flat[..., :2], dim=-1)
else:
points_flat = points.reshape([n*t, 1, 2]) # (n*t, 1, 2)
lanes_flat = lanes[..., :2].reshape([n*t, n_segs, 2]) # (n*t, nseg, 2)
point_dist = torch.norm(points_flat - lanes_flat, dim=-1)
min_idx = torch.argmin(point_dist[:, :-1] + point_dist[:, 1:], dim=1)
if with_angle:
min_idx2 = min_idx.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 3)
else:
min_idx2 = min_idx.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 2)
p2 = torch.gather(lanes_flat, dim=1, index=min_idx2).squeeze(1)
p3 = torch.gather(lanes_flat, dim=1, index=min_idx2+1).squeeze(1)
x1, y1 = points_flat[:, 0, 0], points_flat[:, 0, 1]
x2, y2 = p2[..., 0], p2[..., 1]
x3, y3 = p3[..., 0], p3[..., 1]
area = x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)
bottom_l = torch.norm(p2 - p3, dim=-1)
l2_dist = (torch.clamp((x1-x2)**2+(y1-y2)**2, 1e-3))**0.5
dist = (bottom_l!=0).float() * area / torch.clip(bottom_l,1e-7) + (bottom_l==0).float() * l2_dist
if with_angle:
lane_head = p2[...,2] #(p2[..., 2] + p3[..., 2])/2
traj_head = points_flat[:, 0, 2]
angle_dist = 1 - torch.cos(lane_head - traj_head) #(bottom_l!=0).float() * area / torch.clip(bottom_l,1e-7) + (bottom_l==0).float() * l2_dist
if clip:
return torch.clip(dist.reshape(n, t), -5, 5), angle_dist.reshape(n, t)
else:
return dist.reshape(n, t), angle_dist.reshape(n, t)
if clip:
return torch.clip(dist.reshape(n, t), -5, 5)
else:
return dist.reshape(n, t)
def compute_t2l_angle(points, lanes, reduced_seg=None):
efficient = True
if efficient:
newlanes = lanes[:, None, :, :]
n, n_segs, lane_dim = lanes.shape
t = points.shape[1]
point_dist = torch.norm(points[..., None, :2] - newlanes[..., :2], dim=-1) # (n, t, nseg)
min_idx = torch.argmin(point_dist[:, :, :-1] + point_dist[:, :, 1:], dim=2) # (n, t)
min_idx2 = min_idx.unsqueeze(-1).repeat(1, 1, 3) # (n, t, 3)
p2 = torch.gather(lanes, dim=1, index=min_idx2).squeeze(1)
lane_head = p2[..., 2] #(p2[..., 2] + p3[..., 2])/2
traj_head = points[..., 2]
dist = 1 - torch.cos(lane_head - traj_head) #(bottom_l!=0).float() * area / torch.clip(bottom_l,1e-7) + (bottom_l==0).float() * l2_dist
return dist.reshape(n, t)
else:
# points (N, T, 2)
# lanes (N, T, nseg, 2)
n, t, n_segs, lane_dim = lanes.shape
assert lane_dim in [2, 3]
points_flat = points.reshape([n*t, 1, 3]) # (n*t, 1, 3)
lanes_flat = lanes[..., :3].reshape([n*t, n_segs, 3]) # (n*t, nseg, 2)
point_dist = torch.norm(points_flat[..., :2] - lanes_flat[..., :2], dim=-1)
min_idx = torch.argmin(point_dist[:, :-1] + point_dist[:, 1:], dim=1)
min_idx2 = min_idx.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 3)
p2 = torch.gather(lanes_flat, dim=1, index=min_idx2).squeeze(1)
lane_head = p2[...,2] # (p2[..., 2] + p3[..., 2])/2
traj_head = points_flat[:, 0, 2]
dist = 1 - torch.cos(lane_head - traj_head) #(bottom_l!=0).float() * area / torch.clip(bottom_l,1e-7) + (bottom_l==0).float() * l2_dist
return dist.reshape(n, t)
def measure_diversity(trajs, scores, valids, nt):
# trajs (bs, m, 3, nt * 2)
# scores (bs, m, 3)
# valids (bs, m, 3)
# -------------------------
# return ma_std_avg (, ) ma_ent_avg (, )
# first one std loss
trajs_np = to_np(trajs)
acc_mask_mul_np = to_np((scores>0).long()[..., None].repeat(1, 1, 1, trajs_np.shape[-1]))
valids_mul_np = to_np(valids[..., None].long().repeat(1, 1, 1, trajs_np.shape[-1]))
ma_trajs_np = np.ma.masked_array(trajs_np, mask=1-acc_mask_mul_np)
ma_trajs_std_np = np.std(ma_trajs_np, axis=1).filled(0)
ma_trajs_std_np = np.mean(ma_trajs_std_np, axis=-1) # feature dimension
new_data = np.ma.masked_array(ma_trajs_std_np.flatten(), mask=(1-valids_mul_np[:, 0, :, 0]).flatten())
ma_std_avg = np.mean(new_data)
ma_std_avg_overall=np.mean(np.ma.masked_array(ma_trajs_std_np[:, :], mask=(1-valids_mul_np[:, 0, :, 0])), axis=-1).data
ma_std_avg0=np.ma.masked_array(ma_trajs_std_np[:, 0], mask=(1-valids_mul_np[:, 0, 0, 0])).filled(0).data
ma_std_avg1=np.ma.masked_array(ma_trajs_std_np[:, 1], mask=(1-valids_mul_np[:, 0, 1, 0])).filled(0).data
ma_std_avg2=np.ma.masked_array(ma_trajs_std_np[:, 2], mask=(1-valids_mul_np[:, 0, 2, 0])).filled(0).data
bs = trajs.shape[0]
vol_measure_array = np.zeros((bs, 3))
for bi in range(bs):
for li in range(3):
if valids[bi, 0, li] == 1:
n_masked = np.sum(ma_trajs_np.mask[bi, :, li, 0])
non_masked_idx = np.where(ma_trajs_np.mask[bi, :, li, 0]==0)[0]
if n_masked != trajs.shape[1]:
# print("n_masked=",n_masked, trajs.shape[1])
sel_non_masked_trajs = np.array(trajs_np[bi, non_masked_idx, li].data)
volume = 0
for ti in range(nt):
try:
hull = ConvexHull(sel_non_masked_trajs[..., 2*ti:2*(ti+1)])
# Compute volume
vol= hull.volume
except Exception as e:
# print("ERROR:", e)
vol = 0
volume += vol
vol_measure = volume
else:
vol_measure = 0
else:
vol_measure = 0
vol_measure_array[bi, li] = vol_measure
ma_vol_avg_each = np.mean(np.ma.masked_array(vol_measure_array, mask=1-to_np(valids[:, 0, :].long())))
ma_vol_avg_overall = np.mean(np.ma.masked_array(vol_measure_array[:, :], mask=1-to_np(valids[:, 0, :].long())), axis=-1).data
ma_vol_avg_each0 = np.ma.masked_array(vol_measure_array[:, 0], mask=1-to_np(valids[:, 0, 0].long())).filled(0).data
ma_vol_avg_each1 = np.ma.masked_array(vol_measure_array[:, 1], mask=1-to_np(valids[:, 0, 1].long())).filled(0).data
ma_vol_avg_each2 = np.ma.masked_array(vol_measure_array[:, 2], mask=1-to_np(valids[:, 0, 2].long())).filled(0).data
return ma_std_avg, ma_vol_avg_each, \
(ma_std_avg_overall, ma_std_avg0, ma_std_avg1, ma_std_avg2), (ma_vol_avg_overall, ma_vol_avg_each0, ma_vol_avg_each1, ma_vol_avg_each2)
def compute_area(x, y, th, val, bs, nt, m):
val = val.reshape(bs*3, m, nt, 1)
x_rel = x * torch.cos(th) + y * torch.sin(th)
y_rel = -x * torch.sin(th) + y * torch.cos(th)
xy_rel = torch.stack([x_rel, y_rel], dim=-1)
xy_rel = (xy_rel * val).cpu()
area_list=[]
for i in range(bs * 3):
hist, bin_edges=torch.histogramdd(xy_rel[i], bins=[100,100])
x_length = (bin_edges[0][-1]-bin_edges[0][0])
y_length = (bin_edges[1][-1]-bin_edges[1][0])
area = torch.mean((hist>0).float()) * x_length * y_length
area_list.append(area)
return torch.mean(torch.stack(area_list))
def measure_extra_diversity(trajs, scores, valids, nt, controls, wmin, wmax, amin, amax):
# trajs (bs, m, 3, nt * 4)
# scores (bs, m, 3)
# valids (bs, m, 3)
# make them to (BS, m) or (BS, m, nt, 2) where BS=bs*3
bs, m, _ = scores.shape
trajs = trajs.permute(0, 2, 1, 3).reshape(bs * 3, m, nt, 4)
scores = scores.permute(0, 2, 1).reshape(bs * 3, m)
valids = valids.permute(0, 2, 1).reshape(bs * 3, m)
controls = controls.permute(0, 2, 1, 3).reshape(bs * 3, m, nt, 2)
valids = valids * ((scores>0).float())
speed = trajs[:, :, :, 3]
angle = (trajs[:, :, :, 2] - trajs[:, :, 0:1, 2]+np.pi)%(np.pi*2)-np.pi
# compute scalar-wise entropy
ent_s = compute_entropy(scores, valids)
def rev(xx):
return xx.permute(0, 2, 1).reshape(bs*3*nt, m)
valids_rev = valids[:,None].repeat(1, nt, 1).reshape(bs*3*nt, m)
x_ = trajs[:, :, :, 0] - trajs[:, :, 0:1, 0]
y_ = trajs[:, :, :, 1] - trajs[:, :, 0:1, 1]
w_ = controls[:, :, :, 0]
a_ = controls[:, :, :, 1]
ent_w = compute_entropy(rev(w_), valids_rev, x_min=wmin, x_max=wmax)
ent_a = compute_entropy(rev(a_), valids_rev, x_min=amin, x_max=amax)
area_xy = compute_area(x_, y_, trajs[:, :, :, 2], valids_rev, bs, nt, m)
results = {
"ent_s": torch.mean(ent_s),
"ent_w": torch.mean(ent_w),
"ent_a": torch.mean(ent_a),
"ent_wa": torch.mean(ent_w)+torch.mean(ent_a),
"area": area_xy,
}
return results
def main():
num_trials = 5
old_t_list=[]
new_t_list=[]
dataroot=os.environ["MY_DATA_DIR"]
if len(dataroot)<1:
exit("CANNOT FIND ENV VARIABLE:%s"%(dataroot))
else:
dataroot=os.path.join(dataroot, "nuscenes")
for i in range(num_trials+1):
t1=time.time()
nusc1 = NuscenesPkl(version='v1.0-trainval', dataroot=dataroot, verbose=True)
t2=time.time()
nusc2 = NuScenes(version='v1.0-trainval', dataroot=dataroot, verbose=True)
t3=time.time()
new_t_list.append(t2-t1)
old_t_list.append(t3-t2)
del nusc1
del nusc2
print(" ".join(["%.4f"%x for x in old_t_list]))
print(" ".join(["%.4f"%x for x in new_t_list]))
import numpy as np
old_t_avg = np.mean(old_t_list[1:])
new_t_avg = np.mean(new_t_list[1:])
print("old:%.4f new:%.4f"%(old_t_avg, new_t_avg))
if __name__ == "__main__":
main()