-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeatExtract.py
98 lines (83 loc) · 3.63 KB
/
featExtract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
import os
import torch
from clip.config import cfg
from clip.data import make_data_loader
from clip.engine.inference import inference
from clip.modeling import build_model
from clip.utils.checkpoint import ClipCheckpointer
from clip.utils.comm import synchronize, get_rank
from clip.utils.logger import setup_logger
import h5py
import time
def main():
parser = argparse.ArgumentParser(description="Clip")
parser.add_argument(
"--config-file",
default="configs/2dtan_128x128_pool_k5l8_tacos.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--ckpt",
help="The path to the checkpoint for test, default is the latest checkpoint.",
default=None,
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
parser.add_argument("--feat_dir", type=str, help="The output feature path.")
parser.add_argument("--feat_name", type=str, default='c3d_features.hdf5', help="The name of output features")
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
distributed = num_gpus > 1
if distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
save_dir = ""
logger = setup_logger("clip", save_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(cfg)
model = build_model(cfg)
model.to(cfg.MODEL.DEVICE)
output_dir = cfg.OUTPUT_DIR
checkpointer = ClipCheckpointer(cfg, model, save_dir=output_dir)
ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt
_ = checkpointer.load(ckpt, use_latest=args.ckpt is None)
# Set output file
#if args.local_rank == 0:
#f = h5py.File(os.path.join(args.feat_dir, args.feat_name), 'w')
f = h5py.File(os.path.join(args.feat_dir, "{}_{}".format(str(args.local_rank), args.feat_name)), 'w')
dataset_names = cfg.DATASETS.TEST
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
for dataset_name, data_loader_val in zip(dataset_names, data_loaders_val):
for iteration, (clip, _, capTokens, vidnames, _, _) in enumerate(data_loader_val):
with torch.no_grad():
for vidnam, vidClip in zip(vidnames, clip):
print("{} --- {}: {}".format(args.local_rank, vidnam, vidClip.shape))
feat = []
for eachClip in vidClip:
eachClip = eachClip.unsqueeze(0).cuda() # [1, 3, 16, 112, 112]
clipEmbed = model.vidProjector(model.videoEncoder(eachClip))
clipEmbed = clipEmbed.cpu() # release GPU memory
feat.append(clipEmbed)
features = torch.cat(feat, 0)
features = features.detach().numpy()
fgroup = f.create_group(vidnam)
fgroup.create_dataset('c3d_features', data=features)
#fgroup.create_dataset('total_frames', data=np.array(total_frames))
#fgroup.create_dataset('valid_frames', data=np.array(valid_frames))
#print('{}/{}: {} has been processed...'.format(idx, video_list_len, video_name))
synchronize()
if __name__ == "__main__":
main()