forked from megamayoy/smth-smth-v2-baseline-with-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
373 lines (303 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import os
import sys
import time
import signal
import importlib
import torch
import torch.nn as nn
import numpy as np
from utils import *
from callbacks import (PlotLearning, AverageMeter)
from models.multi_column import MultiColumn
import torchvision
from transforms_video import *
# load configurations
args = load_args()
config = load_json_config(args.config)
# set column model
file_name = config['conv_model']
cnn_def = importlib.import_module("{}".format(file_name))
# setup device - CPU or GPU
device, device_ids = setup_cuda_devices(args)
print(" > Using device: {}".format(device.type))
print(" > Active GPU ids: {}".format(device_ids))
best_loss = float('Inf')
if config["input_mode"] == "av":
from data_loader_av import VideoFolder
elif config["input_mode"] == "skvideo":
from data_loader_skvideo import VideoFolder
else:
raise ValueError("Please provide a valid input mode")
def main():
global args, best_loss
# set run output folder
model_name = config["model_name"]
output_dir = config["output_dir"]
save_dir = os.path.join(output_dir, model_name)
print(" > Output folder for this run -- {}".format(save_dir))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
os.makedirs(os.path.join(save_dir, 'plots'))
# assign Ctrl+C signal handler
signal.signal(signal.SIGINT, ExperimentalRunCleaner(save_dir))
# create model
print(" > Creating model ... !")
model = MultiColumn(config['num_classes'], cnn_def.Model,
int(config["column_units"]))
# multi GPU setting
model = torch.nn.DataParallel(model, device_ids).to(device)
# optionally resume from a checkpoint
checkpoint_path = os.path.join(config['output_dir'],
config['model_name'],
'model_best.pth.tar')
if args.resume:
if os.path.isfile(checkpoint_path):
print(" > Loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(checkpoint_path)
args.start_epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
model.load_state_dict(checkpoint['state_dict'])
print(" > Loaded checkpoint '{}' (epoch {})"
.format(checkpoint_path, checkpoint['epoch']))
else:
print(" !#! No checkpoint found at '{}'".format(
checkpoint_path))
# define augmentation pipeline
upscale_size_train = int(config['input_spatial_size'] * config["upscale_factor_train"])
upscale_size_eval = int(config['input_spatial_size'] * config["upscale_factor_eval"])
# Random crop videos during training
transform_train_pre = ComposeMix([
[RandomRotationVideo(15), "vid"],
[Scale(upscale_size_train), "img"],
[RandomCropVideo(config['input_spatial_size']), "vid"],
])
# Center crop videos during evaluation
transform_eval_pre = ComposeMix([
[Scale(upscale_size_eval), "img"],
[torchvision.transforms.ToPILImage(), "img"],
[torchvision.transforms.CenterCrop(config['input_spatial_size']), "img"],
])
# Transforms common to train and eval sets and applied after "pre" transforms
transform_post = ComposeMix([
[torchvision.transforms.ToTensor(), "img"],
[torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406], # default values for imagenet
std=[0.229, 0.224, 0.225]), "img"]
])
train_data = VideoFolder(root=config['data_folder'],
json_file_input=config['json_data_train'],
json_file_labels=config['json_file_labels'],
clip_size=config['clip_size'],
nclips=config['nclips_train'],
step_size=config['step_size_train'],
is_val=False,
transform_pre=transform_train_pre,
transform_post=transform_post,
augmentation_mappings_json=config['augmentation_mappings_json'],
augmentation_types_todo=config['augmentation_types_todo'],
get_item_id=False,
)
print(" > Using {} processes for data loader.".format(
config["num_workers"]))
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=config['batch_size'], shuffle=True,
num_workers=config['num_workers'], pin_memory=True,
drop_last=True)
val_data = VideoFolder(root=config['data_folder'],
json_file_input=config['json_data_val'],
json_file_labels=config['json_file_labels'],
clip_size=config['clip_size'],
nclips=config['nclips_val'],
step_size=config['step_size_val'],
is_val=True,
transform_pre=transform_eval_pre,
transform_post=transform_post,
get_item_id=True,
)
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=config['batch_size'], shuffle=False,
num_workers=config['num_workers'], pin_memory=True,
drop_last=False)
test_data = VideoFolder(root=config['data_folder'],
json_file_input=config['json_data_test'],
json_file_labels=config['json_file_labels'],
clip_size=config['clip_size'],
nclips=config['nclips_val'],
step_size=config['step_size_val'],
is_val=True,
transform_pre=transform_eval_pre,
transform_post=transform_post,
get_item_id=True,
is_test=True,
)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=config['batch_size'], shuffle=False,
num_workers=config['num_workers'], pin_memory=True,
drop_last=False)
print(" > Number of dataset classes : {}".format(len(train_data.classes)))
assert len(train_data.classes) == config["num_classes"]
# define loss function (criterion)
criterion = nn.CrossEntropyLoss().to(device)
# define optimizer
lr = config["lr"]
last_lr = config["last_lr"]
momentum = config['momentum']
weight_decay = config['weight_decay']
optimizer = torch.optim.SGD(model.parameters(), lr,
momentum=momentum,
weight_decay=weight_decay)
if args.eval_only:
validate(val_loader, model, criterion, train_data.classes_dict)
print(" > Evaluation DONE !")
return
# set callbacks
plotter = PlotLearning(os.path.join(
save_dir, "plots"), config["num_classes"])
lr_decayer = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, 'min', factor=0.5, patience=2, verbose=True)
val_loss = float('Inf')
# set end condition by num epochs
num_epochs = int(config["num_epochs"])
if num_epochs == -1:
num_epochs = 999999
print(" > Training is getting started...")
print(" > Training takes {} epochs.".format(num_epochs))
start_epoch = args.start_epoch if args.resume else 0
for epoch in range(start_epoch, num_epochs):
lrs = [params['lr'] for params in optimizer.param_groups]
print(" > Current LR(s) -- {}".format(lrs))
if np.max(lr) < last_lr and last_lr > 0:
print(" > Training is DONE by learning rate {}".format(last_lr))
sys.exit(1)
# train for one epoch
train_loss, train_top1, train_top5 = train(
train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
val_loss, val_top1, val_top5 = validate(val_loader, model, criterion)
# set learning rate
lr_decayer.step(val_loss, epoch)
# plot learning
plotter_dict = {}
plotter_dict['loss'] = train_loss
plotter_dict['val_loss'] = val_loss
plotter_dict['acc'] = train_top1 / 100
plotter_dict['val_acc'] = val_top1 / 100
plotter_dict['learning_rate'] = lr
plotter.plot(plotter_dict)
print(" > Validation loss after epoch {} = {}".format(epoch, val_loss))
# remember best loss and save the checkpoint
is_best = val_loss < best_loss
best_loss = min(val_loss, best_loss)
save_checkpoint({
'epoch': epoch + 1,
'arch': "Conv4Col",
'state_dict': model.state_dict(),
'best_loss': best_loss,
}, is_best, config)
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if config['nclips_train'] > 1:
input_var = list(input.split(config['clip_size'], 2))
for idx, inp in enumerate(input_var):
input_var[idx] = inp.to(device)
else:
input_var = [input.to(device)]
target = target.to(device)
model.zero_grad()
# compute output and loss
output = model(input_var)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.detach().cpu(), target.detach().cpu(), topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % config["print_freq"] == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
return losses.avg, top1.avg, top5.avg
def validate(val_loader, model, criterion, class_to_idx=None):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
logits_matrix = []
features_matrix = []
targets_list = []
item_id_list = []
end = time.time()
with torch.no_grad():
for i, (input, target, item_id) in enumerate(val_loader):
if config['nclips_val'] > 1:
input_var = list(input.split(config['clip_size'], 2))
for idx, inp in enumerate(input_var):
input_var[idx] = inp.to(device)
else:
input_var = [input.to(device)]
target = target.to(device)
# compute output and loss
output, features = model(input_var, config['save_features'])
loss = criterion(output, target)
if args.eval_only:
logits_matrix.append(output.cpu().data.numpy())
features_matrix.append(features.cpu().data.numpy())
targets_list.append(target.cpu().numpy())
item_id_list.append(item_id)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.detach().cpu(), target.detach().cpu(), topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % config["print_freq"] == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
if args.eval_only:
logits_matrix = np.concatenate(logits_matrix)
features_matrix = np.concatenate(features_matrix)
targets_list = np.concatenate(targets_list)
item_id_list = np.concatenate(item_id_list)
print(logits_matrix.shape, targets_list.shape, item_id_list.shape)
save_results(logits_matrix, features_matrix, targets_list,
item_id_list, class_to_idx, config)
get_submission(logits_matrix, item_id_list, class_to_idx, config)
return losses.avg, top1.avg, top5.avg
if __name__ == '__main__':
main()