-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathvisual.py
224 lines (193 loc) · 9.24 KB
/
visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# ------------------------------------------------------------------------
# Copyright (c) 2021 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
import os
import numpy as np
import random
import argparse
import torch
import torchvision.transforms.functional as F
import cv2
from tqdm import tqdm
from pathlib import Path
from PIL import Image, ImageDraw
from models import build_model
from util.tool import load_model
from util.plot_utils import COCO_CATEGORIES
from main import get_args_parser
from torch.nn.functional import interpolate
from typing import List
import motmetrics as mm
import shutil
import json
import pycocotools.mask as mask_util
from detectron2.structures import Instances
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.layers import paste_masks_in_image
from detectron2.utils.memory import retry_if_cuda_oom
np.random.seed(2020)
COLORS_10 = [(144, 238, 144), (178, 34, 34), (221, 160, 221), (0, 255, 0), (0, 128, 0), (210, 105, 30), (220, 20, 60),
(192, 192, 192), (255, 228, 196), (50, 205, 50), (139, 0, 139), (100, 149, 237), (138, 43, 226),
(238, 130, 238),
(255, 0, 255), (0, 100, 0), (127, 255, 0), (255, 0, 255), (0, 0, 205), (255, 140, 0), (255, 239, 213),
(199, 21, 133), (124, 252, 0), (147, 112, 219), (106, 90, 205), (176, 196, 222), (65, 105, 225),
(173, 255, 47),
(255, 20, 147), (219, 112, 147), (186, 85, 211), (199, 21, 133), (148, 0, 211), (255, 99, 71),
(144, 238, 144),
(255, 255, 0), (230, 230, 250), (0, 0, 255), (128, 128, 0), (189, 183, 107), (255, 255, 224),
(128, 128, 128),
(105, 105, 105), (64, 224, 208), (205, 133, 63), (0, 128, 128), (72, 209, 204), (139, 69, 19),
(255, 245, 238),
(250, 240, 230), (152, 251, 152), (0, 255, 255), (135, 206, 235), (0, 191, 255), (176, 224, 230),
(0, 250, 154),
(245, 255, 250), (240, 230, 140), (245, 222, 179), (0, 139, 139), (143, 188, 143), (255, 0, 0),
(240, 128, 128),
(102, 205, 170), (60, 179, 113), (46, 139, 87), (165, 42, 42), (178, 34, 34), (175, 238, 238),
(255, 248, 220),
(218, 165, 32), (255, 250, 240), (253, 245, 230), (244, 164, 96), (210, 105, 30)]
def plot_one_box(x, img, color=None, label=None, score=None, line_thickness=None, mask=None):
tl = 1
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
# cv2.rectangle(img, c1, c2, color, thickness=tl)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img,
label, (c1[0], c1[1] - 2),
0,
tl / 3, [225, 255, 255],
thickness=tf,
lineType=cv2.LINE_AA)
if score is not None:
cv2.putText(img, score, (c1[0], c1[1] + 30), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
# print("c1c2 = {} {}".format(c1, c2))
if mask is not None:
v = Visualizer(img, scale=1)
vis_mask = v.draw_binary_mask(mask[0].cpu().numpy(), color=None, edge_color=None, text=None)
img = vis_mask.get_image()
return img
def draw_bboxes(ori_img, bbox, mask=None, offset=(0, 0), cvt_color=False):
img = ori_img
for i, box in enumerate(bbox):
if mask is not None and mask.shape[0] > 0:
m = mask[i]
else:
m = None
x1, y1, x2, y2 = [int(i) for i in box[:4]]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
if len(box) > 4:
score = '{:.2f}'.format(box[4])
label = int(box[5])
else:
score = None
label = None
# box text and bar
color = COCO_CATEGORIES[label-1]['color']
class_name = COCO_CATEGORIES[label-1]['name']
label_str = '{}@{}'.format(class_name, score)
# t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0]
# img = plot_one_box([x1, y1, x2, y2], img, color, label, score=score, mask=m)
# img = plot_one_box([x1, y1, x2, y2], img, color, label_str, score=None, mask=m)
img = plot_one_box([x1, y1, x2, y2], img, color, None, score=None, mask=m)
return img
def draw_points(img: np.ndarray, points: np.ndarray, color=(255, 255, 255)) -> np.ndarray:
assert len(points.shape) == 2 and points.shape[1] == 2, 'invalid points shape: {}'.format(points.shape)
for i, (x, y) in enumerate(points):
if i >= 300:
color = (0, 255, 0)
cv2.circle(img, (int(x), int(y)), 2, color=color, thickness=2)
return img
def tensor_to_numpy(tensor: torch.Tensor) -> np.ndarray:
return tensor.detach().cpu().numpy()
class Detector(object):
def __init__(self, args, model=None, postprocessors=None, seq_num=2, img_dir=None):
self.args = args
self.detr = model
self.postprocessors = postprocessors
self.img_dir = img_dir
self.file_name = seq_num['file_name']
self.id = seq_num['id']
self.img_height = 800
self.img_width = 1333
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
self.save_path = os.path.join(self.args.output_dir, 'results')
os.makedirs(self.save_path, exist_ok=True)
def init_img(self, img):
ori_img = img.copy()
self.seq_h, self.seq_w = img.shape[:2]
scale = self.img_height / min(self.seq_h, self.seq_w)
if max(self.seq_h, self.seq_w) * scale > self.img_width:
scale = self.img_width / max(self.seq_h, self.seq_w)
target_h = int(self.seq_h * scale)
target_w = int(self.seq_w * scale)
img = cv2.resize(img, (target_w, target_h))
img = F.normalize(F.to_tensor(img), self.mean, self.std)
img = img.unsqueeze(0)
return img, ori_img
@staticmethod
def filter_dt_by_score(dt_instances: Instances, prob_threshold: float) -> Instances:
keep = dt_instances.scores > prob_threshold
return dt_instances[keep]
@staticmethod
def visualize_img_with_bbox(img_path, img, dt_instances: Instances, ref_pts=None, gt_boxes=None):
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if dt_instances.has('scores'):
if dt_instances.has('masks'):
img_show = draw_bboxes(img, np.concatenate(
[dt_instances.boxes, dt_instances.scores.reshape(-1, 1), dt_instances.labels.reshape(-1, 1)],
axis=-1), dt_instances.masks)
else:
img_show = draw_bboxes(img, np.concatenate(
[dt_instances.boxes, dt_instances.scores.reshape(-1, 1), dt_instances.labels.reshape(-1, 1)],
axis=-1))
else:
img_show = draw_bboxes(img, dt_instances.boxes)
if ref_pts is not None:
img_show = draw_points(img_show, ref_pts)
cv2.imwrite(img_path, img_show)
def detect(self, prob_threshold=0.4, vis=True):
img = cv2.imread(os.path.join(self.img_dir, self.file_name))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
cur_img, ori_img = self.init_img(img)
outputs = self.detr(cur_img.cuda().float())
orig_target_sizes = torch.stack([torch.tensor([self.seq_h, self.seq_w]).cuda()])
results = self.postprocessors['bbox'](outputs, target_sizes=orig_target_sizes)
if 'segm' in postprocessors.keys():
target_sizes = torch.stack([torch.tensor([self.img_height, self.img_width]).cuda()])
results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes)
dt_instances = Instances((1, 1))
dt_instances.boxes = results[0]['boxes']
dt_instances.scores = results[0]['scores']
dt_instances.labels = results[0]['labels']
dt_instances.masks = results[0]['masks']
dt_instances = dt_instances.to(torch.device('cpu'))
dt_instances = self.filter_dt_by_score(dt_instances, prob_threshold)
if vis:
cur_vis_img_path = os.path.join(self.save_path, self.file_name)
self.visualize_img_with_bbox(cur_vis_img_path, ori_img, dt_instances, ref_pts=None)
return dt_instances
if __name__ == '__main__':
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# load model and weights
detr, _, postprocessors = build_model(args)
checkpoint = torch.load(args.resume, map_location='cpu')
detr = load_model(detr, args.resume)
detr.eval()
detr = detr.cuda()
ann_path = './data/coco/annotations/instances_val2017.json'
img_dir = './data/coco/val2017'
annos = json.load(open(ann_path, 'r'))
images = annos['images'][1000:2000]
for seq_num in tqdm(images):
det = Detector(args, model=detr, postprocessors=postprocessors, seq_num=seq_num, img_dir=img_dir)
det.detect(vis=True)