-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsa_detectripples.m
281 lines (246 loc) · 13.8 KB
/
sa_detectripples.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% detectripples
% by Til Ole Bergmann 2013
% last modified 2016/11/22 by TOB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% detects ripples in iEEG data
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [gcfg, data, bpdata, rmsdata, supthreshdata] = sa_detectripples(gcfg,data)
display('Detecting ripples...');
%% get some values
gcfg.labels = data.label';
if ismember('all', gcfg.gaugechannel)
gcfg.gaugechannel = data.label;
end
if ismember('all', gcfg.searchchannel)
gcfg.searchchannel = data.label;
end
%% generate scoring array
switch gcfg.sleepscoringStruct % make sure scoring information is availabvle in data.scoring
case 'trialinfo', data.scoring = int8(data.trialinfo(gcfg.sleepscoringInfoRow,:));
data.trialinfo(gcfg.sleepscoringInfoRow) = [];
case 'scoring'
data.scoring = int8(data.scoring);
end
% generate gcfg.scoring array
gcfg.scoring = int8([]);
% column 1: sleep stages
% 0 = wake, 1 = stage N1 (S1), 2 = stage N2 (S2), 3 = stage N3 (S3), 4 = stage S4, 5 = REM, 6 = MT (movement time), 7 = unknown
if isfield(gcfg,'sleepscoringInfoRow'), gcfg.scoring(1,:) = int8(data.scoring(gcfg.sleepscoringInfoRow,:));
else gcfg.scoring(1,:) = ones(1,length(data.scoring))*7; end
% column 2: movement arousals
% 0 = clean, 1 = MA (movement arousal)
if isfield(gcfg,'movementarousalinfo'), gcfg.scoring(2,:) = int8(data.scoring(gcfg.movementarousalinfo,:));
else gcfg.scoring(2,:) = zeros(1,length(data.scoring)); end
% column 3: stages to gauge search criteria
if isfield(gcfg,'gaugestages'), gcfg.scoring(3,:) = int8(ismember(gcfg.scoring(1,:),gcfg.gaugestages) & gcfg.scoring(2,:)==0);
else gcfg.scoring(3,:) = ones(1,length(data.scoring)); end
% column 4: stages to search events
if isfield(gcfg,'searchstages'), gcfg.scoring(4,:) = int8(ismember(gcfg.scoring(1,:),gcfg.searchstages) & gcfg.scoring(2,:)==0);
else gcfg.scoring(4,:) = ones(1,length(data.scoring)); end
%% prepare artifactFilter
if gcfg.loadartifactfilter
% temp = load(fullfile(gcfg.datapath,[gcfg.subjectName '_artifactFilter.mat']));
% temp = load(fullfile(gcfg.datapath,'artifactFilter.mat'));
% temp = load(fullfile(gcfg.datapath,['artifactFilter_' [gcfg.artifactfreechannels{:}] '_12sec_equated_wake_nREM_REM_ar.mat']));
for i = 1:length(gcfg.artifactfreechannels) % over all channels that need to be artifact free
temp = load(fullfile(gcfg.datapath,['artifactFilter_' [gcfg.artifactfreechannels{i}] gcfg.artifactfiltername]));
filterArray(i,:) = temp.artifactFilter;
clear temp;
end
combinedFilter = all(filterArray,1); % combined filter is only true when filters are true for all channels
for i = 1:size(data.trial,2) % loop over trials
data.artifactFilter{i} = [logical(ones(size(data.trial{i})))];
for j = 1:size(data.trial{i},1) % loop over ALL channels
data.artifactFilter{i}(j,:) = combinedFilter;
end
end
else
for i = 1:size(data.trial,2) % loop over trials
data.artifactFilter{i} = [logical(ones(size(data.trial{i})))];
for j = 1:size(data.trial{i},1) % loop over ALL channels
for k = 1:size(data.artifact{j},1) % loop over artifacts
startArtifact = max(1, data.artifact{j}(k,1) - gcfg.artifactPaddingPre * data.fsample); % artifact time point minus pre padding (but minimally first data point)
endArtifact = min(size(data.trial{i},2), data.artifact{j}(k,2) + gcfg.artifactPaddingPost * data.fsample); % artifact time point minus pre padding (but maximally last data point)
data.artifactFilter{i}(j,startArtifact:endArtifact) = 0;
end
end
end
end
%% bandpass filter in ripple range
bpdata = data;
% gcfg.bpfreq = [gcfg.ripplePeakFreq' - repmat(gcfg.searchfreqmargin,length(gcfg.ripplePeakFreq),1) gcfg.ripplePeakFreq' + repmat(gcfg.searchfreqmargin,length(gcfg.ripplePeakFreq),1)];
gcfg.bpfreq = repmat(gcfg.gaugefreqrange,length(gcfg.searchchannel),1);
for i = 1:size(data.trial,2) % loop over trials
for j = find(ismember(data.label, gcfg.searchchannel))' % loop over search channels
% bpdata.trial{i}(j,:) = ft_preproc_bandpassfilter(data.trial{i}(j,:), data.fsample, gcfg.bpfreq(j,:), 4, 'but', 'twopass', 'reduce');
bpdata.trial{i}(j,:) = ft_preproc_bandpassfilter(data.trial{i}(j,:), double(data.fsample), gcfg.bpfreq(j,:), 3*fix(data.fsample/gcfg.bpfreq(j,1))+1, 'fir', 'twopass'); % Mathilde's formula
end
end
%% calculate root mean square (RMS) signal
rmsdata = bpdata;
rmsdata.trial = {};
for i = 1:size(bpdata.trial,2) % loop over trials
for j = find(ismember(rmsdata.label, gcfg.searchchannel))' % loop over search channels
tempSquared = (bpdata.trial{i}(j,:)) .^2;
tempConvolved = conv(tempSquared,ones(1,data.fsample * gcfg.rmswindowlength),'same');
rmsdata.trial{i}(j,:) = sqrt(tempConvolved);
end
end
%% determine amplitude threshold
% prepare filter
for i = 1:size(rmsdata.trial,2) % loop over trials
channums = find(ismember(rmsdata.label, gcfg.gaugechannel))'; % gauge channels
finalGaugeFilter{i} = all([data.artifactFilter{i}(channums,:); gcfg.scoring(3,:)],1); % only artefact free time points in gauge channels and gauge sleep stages
end
% gather data for variance threshold calculation
for i = 1:size(rmsdata.trial,2) % loop over trials
for j = find(ismember(rmsdata.label, gcfg.gaugechannel))' % loop over gauge channels
vardata(j,:) = rmsdata.trial{i}(j,finalGaugeFilter{i});
end
end
switch gcfg.centerType
case 'median'
for j = find(ismember(rmsdata.label, gcfg.gaugechannel))' % loop over gauge channels
gcfg.center = median(vardata,2);
end
case 'mean'
for j = find(ismember(rmsdata.label, gcfg.gaugechannel))' % loop over gauge channels
gcfg.center = mean(vardata,2);
end
end
switch gcfg.varianceType
case 'mad'
for j = find(ismember(rmsdata.label, gcfg.gaugechannel))' % loop over gauge channels
gcfg.variance = mad(vardata,1,2);
gcfg.rmsampthresh = gcfg.center + gcfg.variance .* gcfg.ampcriterion;
if isfield(gcfg,'gcfg.amplimit')
gcfg.limrmsampthresh(j) = gcfg.center + gcfg.variance .* gcfg.amplimit;
else
gcfg.limrmsampthresh(j) = max(vardata(j,:),[],2);
end
end
case 'sd'
for j = find(ismember(rmsdata.label, gcfg.gaugechannel))' % loop over gauge channels
gcfg.variance = std(vardata,1,2);
gcfg.rmsampthresh = gcfg.center + gcfg.variance .* gcfg.ampcriterion;
if isfield(gcfg,'gcfg.amplimit')
gcfg.limrmsampthresh(j) = gcfg.center + gcfg.variance .* gcfg.amplimit;
else
gcfg.limrmsampthresh(j) = max(vardata(j,:),[],2);
end
end
case 'percent'
for j = find(ismember(rmsdata.label, gcfg.gaugechannel))' % loop over gauge channels
for j = find(ismember(rmsdata.label, gcfg.gaugechannel))' % loop over gauge channels
numelvardata(j) = numel(vardata(j,:));
sortvardata{j} = sort(vardata(j,:),2);
index(j) = round(numelvardata(j)/100*(50+gcfg.ampcriterion));
gcfg.rmsampthresh(j) = sortvardata{j}(index(j));
if isfield(gcfg,'gcfg.amplimit')
limindex(j) = round(numelvardata(j)/100*(50+gcfg.amplimit));
gcfg.limrmsampthresh(j) = sortvardata{j}(limindex(j));
else
gcfg.limrmsampthresh(j) = max(vardata(j,:),[],2);
end
end
end
end
switch gcfg.ampcriterionrule
case 'channel-wise'
% keep it as it is
case 'uniform'
% it is a bit problematic to average over SD-based thresholds in
% case fo more than one channel in gcfg.gaugechannel. One should
% than rather average RMS signal over channels
uniformthresh = mean(gcfg.rmsampthresh(find(ismember(rmsdata.label, gcfg.gaugechannel))));
gcfg.rmsampthresh = ones(length(gcfg.rmsampthresh),1)*uniformthresh;
end
%% find threshold crossings
% prepare filter based on search channels and search sleep stages (!! will now be identical for all channels, this can be change in the future!!)
for i = 1:size(rmsdata.trial,2) % loop over trials
for j = find(ismember(rmsdata.label, gcfg.searchchannel))' % loop over search channels
channums = find(ismember(rmsdata.label, gcfg.searchchannel))'; % search channels
finalSearchFilter{i}(j,:) = all([data.artifactFilter{i}(channums,:); gcfg.scoring(4,:)],1); % only artefact free time points in search channels and search sleep stages
end
end
% detect crossings
for i = 1:size(rmsdata.trial,2) % loop over trials
for j = find(ismember(rmsdata.label, gcfg.searchchannel))' % loop over search channels
supthreshdata{i}(j,:) = all([rmsdata.trial{i}(j,:) >= gcfg.rmsampthresh(j); finalSearchFilter{i}(j,:)]);
end
end
%% find sufficiently long suprathresold epochs and calculate metrics
gcfg.eventInfo = struct;
% for i = find(gcfg.scoring(:,4))' % loop over search epochs
for i = 1:size(rmsdata.trial,2) % loop over trials
for j = find(ismember(rmsdata.label, gcfg.searchchannel))' % loop over search channels
dsig = diff([0 supthreshdata{i}(j,:) 0]);
startIndex = find(dsig > 0);
endIndex = find(dsig < 0)-1;
duration = endIndex-startIndex+1;
ec = 0; % event counter
for k = 1:length(startIndex) % loop over potential ripples
if duration(k) >= gcfg.durcriterion(1)*data.fsample && duration(k) <= gcfg.durcriterion(2)*data.fsample % duration criterion fullfilled
if max(rmsdata.trial{i}(j,startIndex(k):endIndex(k))) <= gcfg.limrmsampthresh(j) % limit RMS amplitude criterion not exceeded
ec = ec + 1;
gcfg.eventInfo(i,j).stage(ec) = single(gcfg.scoring(1,startIndex(k))); % convert stage to single to have same data format in all fields (becomes imnportat later)
gcfg.eventInfo(i,j).startTime(ec) = single(startIndex(k)); % event start (in datapoints)
gcfg.eventInfo(i,j).midTime(ec) = single(mean([startIndex(k) endIndex(k)])); % event mid (in datapoints)
gcfg.eventInfo(i,j).endTime(ec) = single(endIndex(k)); % event end (in datapoints)
gcfg.eventInfo(i,j).duration(ec) = single((endIndex(k)-startIndex(k))/data.fsample); % ripple duration (in seconds)
searchWindow = bpdata.trial{i}(j,startIndex(k):endIndex(k));
[minAmp,minIndex] = min(searchWindow);
[maxAmp,maxIndex] = max(searchWindow);
gcfg.eventInfo(i,j).maxTime(ec) = single(startIndex(k) + maxIndex); % time of ripple peak (in datapoints)
gcfg.eventInfo(i,j).minTime(ec) = single(startIndex(k) + minIndex); % time of ripple trough (in datapoints)
gcfg.eventInfo(i,j).minAmp(ec) = minAmp;
gcfg.eventInfo(i,j).maxAmp(ec) = maxAmp;
gcfg.eventInfo(i,j).p2pAmp(ec) = maxAmp-minAmp;
gcfg.eventInfo(i,j).p2pTime(ec) = single(abs(maxIndex-minIndex)/data.fsample); % in seconds
RMSsearchWindow = rmsdata.trial{i}(j,startIndex(k):endIndex(k));
[RMSmaxAmp,RMSmaxIndex] = max(RMSsearchWindow);
gcfg.eventInfo(i,j).RMSmaxAmp(ec) = RMSmaxAmp; % RMS max
gcfg.eventInfo(i,j).RMSmaxTime(ec) = single(startIndex(k) + RMSmaxIndex); % time of RMS max (in datapoints)
else % limit RMS criterion exceeded
supthreshdata{i}(j,startIndex(k):endIndex(k)) = 0; % remove false ripples from suprathreshdata
end
else % duration criterion NOT fullfilled
supthreshdata{i}(j,startIndex(k):endIndex(k)) = 0; % remove false ripples from suprathreshdata
end
end
end
end
%% add summary statistics to gcfg.summary
for j = find(ismember(rmsdata.label, gcfg.gaugechannel))' % loop over gauge channels
gcfg.summary.median(j) = median(vardata(j,:),2);
gcfg.summary.mean(j) = mean(vardata(j,:),2);
gcfg.summary.mad(j) = mad(vardata(j,:),1,2);
gcfg.summary.std(j) = std(vardata(j,:),1,2);
gcfg.summary.var(j) = var(vardata(j,:),1,2);
gcfg.summary.min(j) = min(vardata(j,:),[],2);
gcfg.summary.max(j) = max(vardata(j,:),[],2);
gcfg.summary.MEAN_RMSmaxAmp = mean(gcfg.eventInfo(1,j).RMSmaxAmp);
gcfg.summary.MEDIAN_RMSmaxAmp = median(gcfg.eventInfo(1,j).RMSmaxAmp);
gcfg.summary.MIN_RMSmaxAmp = min(gcfg.eventInfo(1,j).RMSmaxAmp);
gcfg.summary.MAX_RMSmaxAmp = max(gcfg.eventInfo(1,j).RMSmaxAmp);
gcfg.summary.rmsampthresh(j) = gcfg.rmsampthresh(j);
numelvardata(j) = numel(vardata(j,:));
sortvardata{j} = sort(vardata(j,:),2);
gcfg.summary.Perc_MEAN_RMSmaxAmp(j) = find(sortvardata{j} >= gcfg.summary.MEAN_RMSmaxAmp,1,'first')/numelvardata(j);
gcfg.summary.Perc_MEDIAN_RMSmaxAmp(j) = find(sortvardata{j} >= gcfg.summary.MEDIAN_RMSmaxAmp,1,'first')/numelvardata(j);
gcfg.summary.Perc_MIN_RMSmaxAmp(j) = find(sortvardata{j} >= gcfg.summary.MIN_RMSmaxAmp,1,'first')/numelvardata(j);
gcfg.summary.Perc_MAX_RMSmaxAmp(j) = find(sortvardata{j} >= gcfg.summary.MAX_RMSmaxAmp,1,'first')/numelvardata(j);
gcfg.summary.Perc_rmsampthresh(j) = find(sortvardata{j} >= gcfg.summary.rmsampthresh(j),1,'first')/numelvardata(j);
end
%% channel renaming
% rename channels
for j = 1:numel(bpdata.label)
bpdata.label{j} = [bpdata.label{j} '_ripple_bp']; % change channel names
end
for j = 1:numel(rmsdata.label)
rmsdata.label{j} = [rmsdata.label{j} '_ripple_rms']; % change channel names
end
end % of function