-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathextract_np.py
182 lines (167 loc) · 6.06 KB
/
extract_np.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import smatch.amr as amr
import sys
import re
from amrdata import *
from collections import defaultdict
import copy
def _to_string(triples, root, level, last_child, seen, prefix, indexes):
children = [t for t in triples if str(t[0]) == root.split()[0]]
if root in seen:
root = root.split()[0]
children = []
else:
var = root
if " / " in root:
var = root.split()[0]
indexes[var].append(prefix)
if " / " in root:
seen.append(root)
graph = "(" + root
if len(children) > 0:
graph += "\n"
else:
graph += ")"
else:
graph = root
j = 0
for k, t in enumerate(children):
if str(t[0]) == root.split()[0]:
next_r = t[3]
if t[4] != "":
next_r += " / " + t[4]
for i in range(0, level):
graph += " "
seen2 = copy.deepcopy(seen)
graph += t[2] + " " + _to_string(triples, next_r, level + 1, k == len(children) - 1, seen, prefix + "." + str(j), indexes)[0]
if next_r not in seen2 or " / " not in next_r:
j += 1
if len(children) > 0:
graph += ")"
if not last_child:
graph += "\n"
return graph, indexes
def to_string(triples, root):
children = [t for t in triples if str(t[0]) == root]
if len(children) > 1:
counter = 1
triples2 = [("TOP","",":top","mu","multi-sentence")]
for t in triples:
if t[0] == "TOP":
triples2.append(("mu", "multi-sentence", ":snt" + str(counter), t[3], t[4]))
counter += 1
else:
triples2.append(t)
else:
triples2 = triples
children = [t for t in triples2 if str(t[0]) == root]
assert(len(children) == 1)
if children[0][4] == "":
return "(e / emptygraph)\n", defaultdict(list)
return _to_string(triples2, children[0][3] + " / " + children[0][4], 1, False, [], "0", defaultdict(list))
def var2concept(amr):
v2c = {}
for n, v in zip(amr.nodes, amr.node_values):
v2c[n] = v
return v2c
def preprocess_constituency_tree(snt, syntax):
for idx, word in enumerate(snt.split()):
new_syntax = []
done = False
for tok in syntax.split():
if not done and word == tok and not tok.startswith('<<'):
new_syntax.append('<<' + str(idx) + '>>' + tok)
done = True
else:
new_syntax.append(tok)
syntax = ' '.join(new_syntax)
return syntax
def run(prefix):
blocks = open(prefix + ".sentences.nopars.out").read().split("\n\n")
nps = []
npstart = False
par = 0
k = -1
sents = AMRDataset(prefix, True, False).getAllSents()
famr = open("np_graphs.txt","w")
fsent = open("np_sents.txt","w")
while True:
k += 1
if len(blocks) == 1:
break
block_txt = blocks.pop(0).strip()
block = block_txt.split("\n")
const = "".join(block[3:])
if blocks[0].startswith("\n"):
b = ""
else:
b = blocks.pop(0)
snt = ' '.join(sents[k].tokens)
snt = snt.replace('(', '<OP>')
snt = snt.replace(')', '<CP>')
syntax = " ".join(const.split(']')[-1].replace(')',' )').split())
syntax = preprocess_constituency_tree(snt, syntax)
nps = []
nps_idxs = []
np_flag = False
new_np = ""
new_np_idxs = []
pars = 0
# find all NPs
for tok in syntax.split():
fields = tok.split('>>')
if len(fields) > 1:
i = tok.split('>>')[0][2:]
tok = tok.split('>>')[1]
else:
i = -1
if '(' in tok:
pars += 1
elif ')' in tok:
pars -= 1
if np_flag:
if tok == ')' and pars == 0:
np_flag = False
new_np += tok
new_np_idxs.append(i)
nouns = [x for x in new_np.split() if x.startswith('(N')]
if len(nouns) > 1:
nps.append(re.sub(r'\([A-Z:\-\,\.\$\'\`][A-Z:\-\,\.\$\'\`]*|\)', '', new_np).split())
nps_idxs.append(new_np_idxs[0:-1])
assert(len(nps[-1]) == len(nps_idxs[-1]))
else:
new_np += ' ' + tok
if i != -1:
new_np_idxs.append(i)
else:
if tok == '(NP':
pars = 1
np_flag = True
new_np = tok
new_np_idxs = []
# align NPs with tokens in text and write to file
for n, i in zip(nps, nps_idxs):
nodes = []
if n == []:
continue
a = int(i[0])
b = int(i[-1])
for index in range(a, b + 1):
nodes.extend(sents[k].alignments[index])
if nodes == []:
continue
v2c = defaultdict(str)
amr_annot = amr.AMR.parse_AMR_line(sents[k].graph.replace("\n",""))
for key in var2concept(amr_annot):
v2c[str(key)] = str(var2concept(amr_annot)[key])
rels = [r for r in sents[k].relations if r[0] in nodes and r[2] in nodes]
rels2 = [(r[0], v2c[r[0]], r[1], r[2], v2c[r[2]]) for r in rels]
if len(rels2) > 0:
rels2.insert(0, ("TOP", "", ":top", rels2[0][0], v2c[rels2[0][0]]))
for node in nodes:
if node not in [r[0] for r in rels2] and node not in [r[3] for r in rels2]:
rels2.insert(0, ("TOP", "", ":top", node, v2c[node]))
amr_str = to_string(rels2, rels2[0][0])[0]
famr.write(amr_str + "\n")
fsent.write(" ".join(n).replace('<OP>', '(').replace('<CP>', ')') + "\n")
if __name__ == "__main__":
run(sys.argv[1])