-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdata_loader.py
158 lines (135 loc) · 6.13 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import logging
import pickle
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
__all__ = ['MMDataLoader']
logger = logging.getLogger('MMSA')
class MMDataset(Dataset):
def __init__(self, args, mode='train'):
self.mode = mode
self.args = args
DATASET_MAP = {
'mosi': self.__init_mosi,
'mosei': self.__init_mosei,
}
DATASET_MAP[args['dataset_name']]()
def __init_mosi(self):
with open(self.args['featurePath'], 'rb') as f:
data = pickle.load(f)
if 'use_bert' in self.args and self.args['use_bert']:
self.text = data[self.mode]['text_bert'].astype(np.float32) # BERT feature
else:
self.text = data[self.mode]['text'].astype(np.float32) # GLOVE feature
self.vision = data[self.mode]['vision'].astype(np.float32)
self.audio = data[self.mode]['audio'].astype(np.float32)
self.raw_text = data[self.mode]['raw_text']
self.ids = data[self.mode]['id']
if self.args['feature_T'] != "":
with open(self.args['feature_T'], 'rb') as f:
data_T = pickle.load(f)
if 'use_bert' in self.args and self.args['use_bert']:
self.text = data_T[self.mode]['text_bert'].astype(np.float32)
self.args['feature_dims'][0] = 768
else:
self.text = data_T[self.mode]['text'].astype(np.float32)
self.args['feature_dims'][0] = self.text.shape[2]
if self.args['feature_A'] != "":
with open(self.args['feature_A'], 'rb') as f:
data_A = pickle.load(f)
self.audio = data_A[self.mode]['audio'].astype(np.float32)
self.args['feature_dims'][1] = self.audio.shape[2]
if self.args['feature_V'] != "":
with open(self.args['feature_V'], 'rb') as f:
data_V = pickle.load(f)
self.vision = data_V[self.mode]['vision'].astype(np.float32)
self.args['feature_dims'][2] = self.vision.shape[2]
self.labels = {
'M': np.array(data[self.mode]['regression_labels']).astype(np.float32)
}
logger.info(f"{self.mode} samples: {self.labels['M'].shape}")
if not self.args['need_data_aligned']:
if self.args['feature_A'] != "":
self.audio_lengths = list(data_A[self.mode]['audio_lengths'])
else:
self.audio_lengths = data[self.mode]['audio_lengths']
if self.args['feature_V'] != "":
self.vision_lengths = list(data_V[self.mode]['vision_lengths'])
else:
self.vision_lengths = data[self.mode]['vision_lengths']
self.audio[self.audio == -np.inf] = 0
if 'need_normalized' in self.args and self.args['need_normalized']:
self.__normalize()
def __init_mosei(self):
return self.__init_mosi()
def __init_sims(self):
return self.__init_mosi()
def __truncate(self):
def do_truncate(modal_features, length):
if length == modal_features.shape[1]:
return modal_features
truncated_feature = []
padding = np.array([0 for i in range(modal_features.shape[2])])
for instance in modal_features:
for index in range(modal_features.shape[1]):
if((instance[index] == padding).all()):
if(index + length >= modal_features.shape[1]):
truncated_feature.append(instance[index:index+20])
break
else:
truncated_feature.append(instance[index:index+20])
break
truncated_feature = np.array(truncated_feature)
return truncated_feature
text_length, audio_length, video_length = self.args['seq_lens']
self.vision = do_truncate(self.vision, video_length)
self.text = do_truncate(self.text, text_length)
self.audio = do_truncate(self.audio, audio_length)
def __normalize(self):
self.vision = np.transpose(self.vision, (1, 0, 2))
self.audio = np.transpose(self.audio, (1, 0, 2))
self.vision = np.mean(self.vision, axis=0, keepdims=True)
self.audio = np.mean(self.audio, axis=0, keepdims=True)
self.vision[self.vision != self.vision] = 0
self.audio[self.audio != self.audio] = 0
self.vision = np.transpose(self.vision, (1, 0, 2))
self.audio = np.transpose(self.audio, (1, 0, 2))
def __len__(self):
return len(self.labels['M'])
def get_seq_len(self):
if 'use_bert' in self.args and self.args['use_bert']:
return (self.text.shape[2], self.audio.shape[1], self.vision.shape[1])
else:
return (self.text.shape[1], self.audio.shape[1], self.vision.shape[1])
def get_feature_dim(self):
return self.text.shape[2], self.audio.shape[2], self.vision.shape[2]
def __getitem__(self, index):
sample = {
'raw_text': self.raw_text[index],
'text': torch.Tensor(self.text[index]),
'audio': torch.Tensor(self.audio[index]),
'vision': torch.Tensor(self.vision[index]),
'index': index,
'id': self.ids[index],
'labels': {k: torch.Tensor(v[index].reshape(-1)) for k, v in self.labels.items()}
}
if not self.args['need_data_aligned']:
sample['audio_lengths'] = self.audio_lengths[index]
sample['vision_lengths'] = self.vision_lengths[index]
return sample
def MMDataLoader(args, num_workers):
datasets = {
'train': MMDataset(args, mode='train'),
'valid': MMDataset(args, mode='valid'),
'test': MMDataset(args, mode='test')
}
if 'seq_lens' in args:
args['seq_lens'] = datasets['train'].get_seq_len()
dataLoader = {
ds: DataLoader(datasets[ds],
batch_size=args['batch_size'],
num_workers=num_workers,
shuffle=True)
for ds in datasets.keys()
}
return dataLoader