-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1.3.4-procedures-as-returned-values.rkt
187 lines (137 loc) · 4.4 KB
/
1.3.4-procedures-as-returned-values.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#lang sicp
; from 1.3.3 procedures as general methods
(define tolerance 0.00001)
(define (fixed-point f first-guess)
(define (close-enough? v1 v2)
(< (abs (- v1 v2))
tolerance))
(define (try guess)
(let ((next (f guess)))
(if (close-enough? guess next)
next
(try next))))
(try first-guess))
(define (average x y)
(/ (+ x y) 2))
(define (square x) (* x x))
(define (average-damp f)
(lambda (x) (average x (f x))))
((average-damp square) 10) ; 55
(define dx 0.00001)
(define (deriv g)
(lambda (x)
(/ (- (g (+ x dx)) (g x))
dx)))
(define (cube x) (* x x x))
((deriv cube) 5) ; 75.00014999664018
; Newton's method
(define (newton-transform g)
(lambda (x)
(- x (/ (g x)
((deriv g) x)))))
(define (newtons-method g guess)
(fixed-point (newton-transform g) guess))
; compute sqrt by finding a 0 of y -> y^2 - x
(define (sqrt x)
(newtons-method (lambda (y) (- (square y) x))
1.0))
(sqrt 9) ; 3.000000000000002
; generalized fixed point of a transformed function
(define (fixed-point-of-transform g transform guess)
(fixed-point (transform g) guess))
; rewrite of the average-damp transformed method, which looks for a
; fixed point of the average-damped version of y -> x / y.
(define (sqrt-avgdamp x)
(fixed-point-of-transform (lambda (y) (/ x y))
average-damp
1.0))
(sqrt-avgdamp 25) ; 5.0
; rewrite of sqrt using newton's method
(define (sqrt-newton x)
(fixed-point-of-transform (lambda (y) (- (square y) x))
newton-transform
1.0))
(sqrt-newton 49) ; 7.000000000000103
; 1.40
(define (cubic a b c)
(lambda (x)
(+ (cube x) (* a (square x)) (* b x) c)))
(newtons-method (cubic 1 2 3) 1.0) ; -1.2756822036498454
; 1.41
(define (double f)
(lambda (x) (f (f x))))
(define (inc x) (+ x 1))
((double inc) 1) ; 3
(((double (double double)) inc) 5) ; 21
(((double double) inc) 5) ; 9
(((double double) inc) 3) ; 7
(((double double) inc) 1) ; 5
; (double inc) x = 2 + x
; ((double double) inc) x = (2*2) + x
; ((double (double double)) inc) x = (2*2)^2 + x
; 1.42
(define (compose f g)
(lambda (x) (f (g x))))
((compose square inc) 6) ; 49
; 1.43
(define (repeated f n)
(if (= n 1)
f
(compose f (repeated f (- n 1)))))
((repeated square 2) 5) ; 625
; 1.44
(define (smooth f)
(lambda (x)
(/ (+ (f (- x dx))
(f x)
(f (+ x dx)))
3)))
(define (n-fold-smooth f n)
((repeated smooth n) f)) ; ?? how to test this
; 1.45
; nth root -> fixed point of repeated average damping of y -> x/y^ (n-1).
(define (nth-average-damp n)
(repeated average-damp n))
; nth root of x with m repeated applications of average-damp
(define (nth-root x n m)
(fixed-point-of-transform (lambda (y) (/ x (expt y (- n 1))))
(nth-average-damp m)
1.0))
(nth-root 59049 5 2) ; 8.99999900297224
(nth-root 59049 5 3) ; 9.00000287051618
(nth-root 28629151 5 2) ; 31.000000745214237
(nth-root 28629151 5 3) ; 31.00000388252769 <- less precision??
(nth-root 729 6 2) ; 2.999996785898161
(nth-root 729 6 3) ; 3.000001570305295
; (nth-root 10 10 2) ; doesnt converge, never returns
(nth-root 10 10 3) ; 1.2589247156514267
; 1.46
(define (iterative-improve good-enough? improve)
(define (try guess)
(if (good-enough? guess)
guess
(try (improve guess))))
(lambda (guess) (try guess)))
(define (sqrt-iterative-improve x)
(define (good-enough? y)
(< (abs (- (square y) x)) dx))
(define (improve y)
(average y (/ x y)))
((iterative-improve good-enough? improve) x))
(sqrt-iterative-improve 4.0) ; 2.0000000929222947
(sqrt-iterative-improve 9.0) ; 3.000000001396984
(sqrt-iterative-improve 25.0) ; 5.000000000053722
(define (fixed-point-iterative-improve f first-guess)
(define (good-enough? x)
(< (abs (- x (f x))) dx))
(define (improve x)
(f x))
((iterative-improve good-enough? improve) first-guess))
(define (newtons-method-iterative-improve g guess)
(fixed-point-iterative-improve (newton-transform g) guess))
(define (sqrt-newton-iterative-improve x)
(newtons-method-iterative-improve (lambda (y) (- (square y) x))
1.0))
(sqrt-newton-iterative-improve 9.0) ; 3.0000000015508212
(sqrt-newton-iterative-improve 16.0) ; 4.000000639575587
(sqrt-newton-iterative-improve 25.0) ; 5.0000000000769855