forked from JunyaHayashida/MPM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpm_train3D.py
143 lines (117 loc) · 5.01 KB
/
mpm_train3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import logging
import os
import sys
import torch
import torch.nn as nn
from torch import optim
from tqdm import tqdm
from mpm_eval import eval_net
from MPM_Net3D import MPMNet3D
from torch.utils.tensorboard import SummaryWriter
from utils.mpm_loader import MPM_Dataset3D
from torch.utils.data import DataLoader, random_split
from utils.losses import RMSE_Q_NormLoss
import hydra
def train_net(net,
device,
cfg):
if cfg.eval.imgs is not None:
train = MPM_Dataset3D(cfg.train, cfg.dataloader)
val = MPM_Dataset3D(cfg.eval, cfg.dataloader)
n_train = len(train)
n_val = len(val)
else:
dataset = MPM_Dataset3D(cfg.train, cfg.dataloader)
n_val = int(len(dataset) * cfg.eval.rate)
n_train = len(dataset) - n_val
train, val = random_split(dataset, [n_train, n_val])
epochs = cfg.train.epochs
batch_size = cfg.train.batch_size
train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
val_loader = DataLoader(val, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True, drop_last=True)
writer = SummaryWriter(comment=f'LR_{cfg.train.lr}_BS_{batch_size}')
global_step = 0
optimizer = optim.Adam(net.parameters(), lr=cfg.train.lr)
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min' if net.n_classes > 1 else 'max', patience=2)
criterion = RMSE_Q_NormLoss(0.8)
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {cfg.train.lr}
Training size: {len(train)}
Validation size: {len(val)}
Checkpoints: {cfg.output.save}
Device: {device.type}
Intervals {cfg.train.itvs}
Optimizer {optimizer.__class__.__name__}
Criterion {criterion.__class__.__name__}
''')
for epoch in range(epochs):
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar:
for batch in train_loader:
imgs = batch['img']
mpms_gt = batch['mpm']
imgs = imgs.to(device=device, dtype=torch.float32)
mpms_gt = mpms_gt.to(device=device, dtype=torch.float32)
mpms_pred = net(imgs)
loss = criterion(mpms_pred, mpms_gt)
epoch_loss += loss.item()
writer.add_scalar('Loss/train', loss.item(), global_step)
pbar.set_postfix(**{'loss (batch)': loss.item()})
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_value_(net.parameters(), 0.1)
optimizer.step()
pbar.update(imgs.shape[0])
global_step += 1
if global_step % (n_train // (batch_size)) == 0:
for tag, value in net.named_parameters():
tag = tag.replace('.', '/')
writer.add_histogram('weights/' + tag, value.data.cpu().numpy(), global_step)
writer.add_histogram('grads/' + tag, value.grad.data.cpu().numpy(), global_step)
val_loss = eval_net(net, val_loader, device, criterion, writer, global_step)
# scheduler.step(val_score)
writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], global_step)
logging.info('Validation loss: {}'.format(val_loss))
writer.add_scalar('Loss/test', val_loss, global_step)
if cfg.output.save:
try:
os.mkdir(cfg.output.dir)
logging.info('Created checkpoint directory')
except OSError:
pass
torch.save(net.state_dict(),
os.path.join(cfg.output.dir, f'CP_epoch{epoch + 1}.pth'))
logging.info(f'Checkpoint {epoch + 1} saved !')
writer.close()
@hydra.main(config_path='config/mpm_train3D.yaml')
def main(cfg):
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
net = MPMNet3D()
# logging.info(f'Network:\n'
# f'\t{net.n_channels} input channels\n'
# f'\t{net.n_classes} output channels\n'
# f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling')
if cfg.load:
net.load_state_dict(
torch.load(cfg.load, map_location=device)
)
logging.info(f'Model loaded from {cfg.load}')
net.to(device=device)
try:
train_net(net=net,
device=device,
cfg=cfg)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)
if __name__ == '__main__':
main()