-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
57 lines (51 loc) · 2.38 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
import torch.nn as nn
import torch.nn.functional as F
class MNIST2NN(nn.Module):
def __init__(self):
super(MNIST2NN, self).__init__()
# Input layer to first hidden layer (784 input features for 28x28 images)
self.fc1 = nn.Linear(784, 200)
# First hidden layer to second hidden layer
self.fc2 = nn.Linear(200, 200)
# Second hidden layer to output layer (10 classes for MNIST digits 0-9)
self.fc3 = nn.Linear(200, 10)
def forward(self, x):
# Flatten the input tensor to (batch_size, 784)
x = x.view(-1, 784)
# First hidden layer with ReLU activation
x = F.relu(self.fc1(x))
# Second hidden layer with ReLU activation
x = F.relu(self.fc2(x))
# Output layer (no activation function as it will be combined with softmax or cross-entropy loss later)
x = self.fc3(x)
return x
class MNISTCNN(nn.Module):
def __init__(self):
super(MNISTCNN, self).__init__()
# First convolutional layer: input channels = 1 (for grayscale images), output channels = 32, kernel size = 5x5
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5)
# Second convolutional layer: input channels = 32, output channels = 64, kernel size = 5x5
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5)
# Fully connected layer: input features will depend on the output size of the conv layers after pooling
self.fc1 = nn.Linear(64 * 4 * 4, 512) # Adjusted input size based on output dimensions after pooling
# Output layer: 10 classes for MNIST digits
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
# First convolutional layer with ReLU activation and 2x2 max pooling
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
# Second convolutional layer with ReLU activation and 2x2 max pooling
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
# Flatten the tensor for the fully connected layer
x = x.view(-1, 64 * 4 * 4)
# Fully connected layer with ReLU activation
x = F.relu(self.fc1(x))
# Output layer with softmax activation (optional if using CrossEntropyLoss)
x = self.fc2(x)
return x
model_factory = {
"mnist2nn": MNIST2NN,
"mnistcnn": MNISTCNN
}