-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_trec.py
48 lines (34 loc) · 1.21 KB
/
evaluate_trec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse
parser = argparse.ArgumentParser(description='Takes a run and calculates the appropriate TREC metrics for the 2023 qrels.')
parser.add_argument('run_file', type=str, help='Input the path of your run file.')
args = parser.parse_args()
import pyterrier as pt
import pandas as pd
if not pt.started():
pt.init()
class DummyRetriever(pt.transformer.TransformerBase):
def __init__(self, results_df):
self.results_df = results_df
def transform(self, topics):
return self.results_df
qrels_df = pt.io.read_qrels("./data/new_qrels/2023-qrels.txt")
binary_qrels_df = pt.io.read_qrels("./data/new_qrels/2023-qrels-binary.txt")
run_df = pt.io.read_results(args.run_file)
unique_topics = run_df['qid'].unique() #topics no
topics_df = pd.DataFrame(unique_topics, columns=['qid'])
dummy_retriever = DummyRetriever(run_df)
results = pt.Experiment(
[dummy_retriever],
topics_df,
qrels_df,
eval_metrics=["ndcg_cut_5", "ndcg_cut_10"]
)
results_binary = pt.Experiment(
[dummy_retriever],
topics_df,
binary_qrels_df,
eval_metrics=["P_10", "recip_rank"]
)
merged_df = pd.merge(results, results_binary, on='name')
merged_df = merged_df.drop(columns=['name'])
print(merged_df)