-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentropyCA.R
403 lines (343 loc) · 10.8 KB
/
entropyCA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
###############################################################################
# Entropy of n
###############################################################################
#
# x <- CA
# n <- size of subseq
# the size must be divisor of the CA length or it will be truncated
#
###############################################################################
entropy <- function(x, n=1, kbase=k)
{
# generate all subsequences of x using size n
sbsq <- allsubseq(x, n, SUBSEQ_OVERLAP)
# generate all combinations that is possible with size n and k base
cmbs <- allcombn(n, kbase)
# count all subseqs
count <- numeric(nrow(cmbs))
for (i in 1:nrow(sbsq))
{
# TODO:
# método está ineficiente, pois ele varre o total de subseqs para fazer 1 soma
# deveria ser O(1) ao invés de O(k^n)
# método O(1)
index_aux <- sbsq[i,]
index <- 0
for(j in 1:n)
{
index <- index + index_aux[j] * (k**(n-j))
}
index <- index + 1
count[index] <- count[index] + 1
#for (j in 1:nrow(cmbs))
#{
# count[j] <- count[j] + all(sbsq[i,] == cmbs[j,])
#}
}
# Contar e eliminar aqueles valores que estão aparecendo pouco
# Montar uma variação da entropia
#
# cat('\n')
# cat(count)
# cat('\n')
# probability of each subseq to appear in 'x'
p <- numeric(nrow(cmbs))
p <- count/(nrow(sbsq))
# log of probability p
log_p <- numeric(nrow(cmbs))
for(i in 1:nrow(cmbs))
{
if (p[i] <= 0)
{
log_p[i] <- 0
}
else
{
log_p[i] <- log(p[i], base=kbase)
}
}
# cat("count", count, "\n")
# cat("prob", p, "\n")
(-sum(log_p*p))/n
}
###############################################################################
# Entropy of subsequence size 1
###############################################################################
#
# Basic entropy just to see if the ratio (of ones and zeros) is fine
#
###############################################################################
entropy.1 <- function(x, kbase=k)
{
# obtain p and log(p) for each element
# if its probability p is zero, its log will be -infinite
# so it must verify that no one of this appear
# because if it's appear, will give us an NaN (and it's not good)
p <- numeric(kbase)
log_p <- numeric(kbase)
for(i in 1:kbase)
{
# probability of each element to appear in 'x'
p[i] <- sum(x == (i-1))/(length(x))
if (p[i] <= 0)
{
log_p[i] <- 0
}
else
{
log_p[i] <- log(p[i], base=kbase)
}
}
-sum(log_p*p)
}
###############################################################################
# Variation of entropy
###############################################################################
#
# x <- CA
# n <- size of subseq
# the size must be divisor of the CA length or it will be truncated
#
###############################################################################
entropy.lawful <- function(x, n=1, kbase=k)
{
# generate all subsequences of x using size n
sbsq <- allsubseq(x, n, SUBSEQ_OVERLAP)
# generate all combinations that is possible with size n and k base
cmbs <- allcombn(n, kbase)
# count all subseqs
count <- numeric(nrow(cmbs))
for (i in 1:nrow(sbsq))
{
# TODO:
# método está ineficiente, pois ele varre o total de subseqs para fazer 1 soma
# deveria ser O(1) ao invés de O(k^n)
# método O(1)
index_aux <- sbsq[i,]
index <- 0
for(j in 1:n)
{
index <- index + index_aux[j] * (k**(n-j))
}
index <- index + 1
count[index] <- count[index] + 1
}
# Remove from count those cmbs that never got achieved
cmbs.removed <- which(count==0)
if (length(cmbs.removed) > 0)
count <- count[-cmbs.removed]
# probability of each subseq to appear in 'x'
p <- numeric(nrow(cmbs) - length(cmbs.removed))
p <- count/(nrow(sbsq))
# log of probability p
log_p <- numeric(nrow(cmbs) - length(cmbs.removed))
for(i in 1:length(log_p))
{
if (p[i] <= 0)
{
log_p[i] <- 0
}
else
{
log_p[i] <- log(p[i], base=kbase)
}
}
# cat("count", count, "\n")
# cat("prob", p, "\n")
(-sum(log_p*p))/n
}
###############################################################################
# Cover Degree
###############################################################################
#
###############################################################################
coverdegree <- function(x, n=1, kbase=k)
{
# generate all subsequences of x using size n
sbsq <- allsubseq(x, n, SUBSEQ_OVERLAP)
# generate all combinations that is possible with size n and k base
cmbs <- allcombn(n, kbase)
# count all subseqs
count <- numeric(nrow(cmbs))
for (i in 1:nrow(sbsq))
{
index_aux <- sbsq[i,]
index <- 0
for(j in 1:n)
{
index <- index + index_aux[j] * (k**(n-j))
}
index <- index + 1
count[index] <- count[index] + 1
}
# Remove from count those cmbs that never got achieved
cmbs.removed <- which(count==0)
if (length(cmbs.removed) > 0)
count <- count[-cmbs.removed]
# cover degree 1-(removed/total)
#cat("Cover Degree", 1-length(cmbs.removed)/nrow(cmbs), "\n")
1-length(cmbs.removed)/nrow(cmbs)
}
###############################################################################
# Export Entropy Plots
###############################################################################
#
# exports multiple plots of the evolution of entropy of each cell
#
###############################################################################
exportEntropyPlots <- function(H)
{
for (i_cell in 1:N_cells)
{
filename <- sprintf("plots/entropy-ca1d-evol-cell-%04d.png", i_cell)
png(filename)
plot(H[,i_cell], main=sprintf("Entropy of cell %d",i_cell))
dev.off()
}
system("convert -delay 50 \"plots/*.png\" plots/ca1d-evol-entropy.gif")
#system("rm plots/*.png")
}
###############################################################################
# show entropy
###############################################################################
#
#
###############################################################################
show.entropy <- function(H, n=1, plot.main="", xlab="", ylab="Entropy", info="")
{
cat("---------------------------------------------\n")
H.min <- min(H)
H.mean <- mean(H)
H.max <- max(H)
plot(H, xlab=xlab, ylab=ylab, main=plot.main, ylim=c(0,1))
abline(h=1)
abline(h=H.mean)
text(0.1*length(H), 0.4, sprintf("Max Entropy: %.4f", H.max), pos=4)
text(0.1*length(H), 0.3, sprintf("Mean Entropy: %.4f", H.mean), pos=4)
text(0.1*length(H), 0.2, sprintf("Min Entropy: %.4f", H.min), pos=4)
cat(info)
cat("\n")
cat("Min Entropy:", H.min,'\n')
cat("at:")
for (i in 1:length(H)){if(H[i]==H.min) cat(i,' ')}
cat("\n")
cat("Mean Entropy:", H.mean,'\n')
cat("Max Entropy:", H.max,'\n')
cat("at:")
for (i in 1:length(H)){if(H[i]==H.max) cat(i,' ')}
cat("\n")
cat("---------------------------------------------\n")
}
###############################################################################
# Run Entropy
###############################################################################
#
# Obtain the entropy and other statistical measures for analysis
# about the randomness of the cellular automata (y[t,x]) given
#
###############################################################################
runEntropy <- function(y, n=1, type, lawful=0)
{
if (length(type)==0)
{
cat("Error: Type not defined.\n")
}
else
{
n_iters <- nrow(y)
n_cells <- ncol(y)
# Entropy of each state (line) during a CA evolution
if (type == "state")
{
H <- numeric(n_iters)
for (i in 1:n_iters)
{
H[i] <- entropy(y[i,], n)
}
if (PRINT_ENTROPY)
{
plot.main=sprintf("Entropy of subseq size %d",n)
info.main=sprintf("Entropy of subseq size %d on States",n)
axis.x.lab <- "iters"
show.entropy(H=H,n=n, plot.main=plot.main, xlab=axis.x.lab, ylab="Entropy",
info=info.main)
}
}
# Entropy of each cell (column) during a CA evolution
else if (type == "cell")
{
H <- numeric(n_cells)
if(lawful)
{
for (i in 1:n_cells)
{
H[i] <- entropy.lawful(y[,i], n)
}
}
else
{
for (i in 1:n_cells)
{
H[i] <- entropy(y[,i], n)
}
}
if (PRINT_ENTROPY)
{
plot.main=sprintf("Entropy of subseq size %d",n)
info.main=sprintf("Entropy of subseq size %d on Cells",n)
axis.x.lab <- "cell"
show.entropy(H=H,n=n, plot.main=plot.main, xlab=axis.x.lab, ylab="Entropy",
info=info.main)
}
}
}
H
}
###############################################################################
# Run Cover Degree
###############################################################################
#
# Obtain the cover degree for analysis
# of the cellular automata (y[t,x]) given
#
###############################################################################
runCover <- function(y, n=1, type)
{
if (length(type)==0)
{
cat("Error: Type not defined.\n")
}
else
{
n_iters <- nrow(y)
n_cells <- ncol(y)
# Cover degree of each state (line) during a CA evolution
if (type == "state")
{
CD <- numeric(n_iters)
for (i in 1:n_iters)
{
CD[i] <- coverdegree(y[i,], n, k)
}
}
# Cover degree of each cell (column) during a CA evolution
else if (type == "cell")
{
CD <- numeric(n_cells)
for (i in 1:n_cells)
{
CD[i] <- coverdegree(y[,i], n, k)
}
}
}
CD.min <- min(CD)
CD.mean <- mean(CD)
CD.max <- max(CD)
#cat("---------------------------------------------\n")
#cat("Min Cover:", CD.min,'\n')
#cat("Mean Cover:", CD.mean,'\n')
#cat("Max Cover:", CD.max,'\n')
#cat("---------------------------------------------\n")
#plot(CD, main=sprintf("cover degree, hmax=%d",n), ylim=c(0,1))
CD
}