-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathstateresolutionv2heaps.go
135 lines (122 loc) · 4.34 KB
/
stateresolutionv2heaps.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// Copyright 2020 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package gomatrixserverlib
import (
"strings"
"github.com/matrix-org/gomatrixserverlib/spec"
)
// A stateResV2ConflictedPowerLevel is used to sort the events by effective
// power level, origin server TS and the lexicographical comparison of event
// IDs. It is a bit of an optimisation to use this - by working out the
// effective power level etc ahead of time, we use less CPU cycles during the
// sort.
type stateResV2ConflictedPowerLevel struct {
powerLevel int64
originServerTS spec.Timestamp
eventID string
event PDU
}
// A stateResV2ConflictedPowerLevelHeap is used to sort the events using
// sort.Sort or by using the heap functions for further optimisation. Sorting
// ensures that the results are deterministic.
type stateResV2ConflictedPowerLevelHeap []*stateResV2ConflictedPowerLevel
// Less implements sort.Interface
func sortStateResV2ConflictedPowerLevelHeap(a, b *stateResV2ConflictedPowerLevel) int {
// Try to tiebreak on the effective power level
if a.powerLevel > b.powerLevel {
return -1
}
if a.powerLevel < b.powerLevel {
return 1
}
// If we've reached here then s[i].powerLevel == s[j].powerLevel
// so instead try to tiebreak on origin server TS
if a.originServerTS < b.originServerTS {
return -1
}
if a.originServerTS > b.originServerTS {
return 1
}
// If we've reached here then s[i].originServerTS == s[j].originServerTS
// so instead try to tiebreak on a lexicographical comparison of the event ID
return strings.Compare(a.eventID[:], b.eventID[:])
}
// Push implements heap.Interface
func (s *stateResV2ConflictedPowerLevelHeap) Push(x *stateResV2ConflictedPowerLevel) {
*s = append(*s, x)
}
// Pop implements heap.Interface
func (s *stateResV2ConflictedPowerLevelHeap) Pop() *stateResV2ConflictedPowerLevel {
old := *s
n := len(old)
x := old[n-1]
*s = old[:n-1]
return x
}
// A stateResV2ConflictedOther is used to sort the events by power level
// mainline positions, origin server TS and the lexicographical comparison of
// event IDs. It is a bit of an optimisation to use this - by working out the
// effective power level etc ahead of time, we use less CPU cycles during the
// sort.
type stateResV2ConflictedOther struct {
mainlinePosition int
mainlineSteps int
originServerTS spec.Timestamp
eventID string
event PDU
}
// A stateResV2ConflictedOtherHeap is used to sort the events using
// sort.Sort or by using the heap functions for further optimisation. Sorting
// ensures that the results are deterministic.
type stateResV2ConflictedOtherHeap []*stateResV2ConflictedOther
func sortStateResV2ConflictedOtherHeap(a, b *stateResV2ConflictedOther) int {
// Try to tiebreak on the mainline position
if a.mainlinePosition < b.mainlinePosition {
return -1
}
if a.mainlinePosition > b.mainlinePosition {
return 1
}
// If we've reached here then s[i].mainlinePosition == s[j].mainlinePosition
// so instead try to tiebreak on step count
if a.mainlineSteps < b.mainlineSteps {
return -1
}
if a.mainlineSteps > b.mainlineSteps {
return 1
}
// If we've reached here then s[i].mainlineSteps == s[j].mainlineSteps
// so instead try to tiebreak on origin server TS
if a.originServerTS < b.originServerTS {
return -1
}
if a.originServerTS > b.originServerTS {
return 1
}
// If we've reached here then s[i].originServerTS == s[j].originServerTS
// so instead try to tiebreak on a lexicographical comparison of the event ID
return strings.Compare(a.eventID, b.eventID)
}
// Push implements heap.Interface
func (s *stateResV2ConflictedOtherHeap) Push(x *stateResV2ConflictedOther) {
*s = append(*s, x)
}
// Pop implements heap.Interface
func (s *stateResV2ConflictedOtherHeap) Pop() *stateResV2ConflictedOther {
old := *s
n := len(old)
x := old[n-1]
*s = old[:n-1]
return x
}