-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_blog_images_for_model.py
83 lines (66 loc) · 3 KB
/
generate_blog_images_for_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
import models
import numpy as np
import jax.numpy as jnp
import objax
import jax
import data
import util
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import sys
def cm_plot(cm):
labels = ['Annual Crop', 'Forest', 'Herbaceous Vegetation', 'Highway',
'Industrial Buildings', 'Pasture', 'Permanent Crop',
'Residential Buildings', 'River', 'Sea & Lake']
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=labels)
return disp.plot(include_values=True,
cmap='viridis', ax=None, xticks_rotation='vertical',
values_format=None)
def save_plot(y_true, y_pred, title, fname):
plot = cm_plot(confusion_matrix(y_true, y_pred))
plot.figure_.suptitle(title)
plot.figure_.savefig(fname, bbox_inches='tight', transparent=True)
def save_sub_model_plots(y_true, logits, num_models, title_template,
fname_template):
for m in range(num_models):
y_pred = jnp.argmax(logits[m], axis=-1)
num_correct = np.equal(y_pred, y_true).sum()
num_total = len(y_true)
print("model %d accuracy %0.3f" % (m, float(num_correct / num_total)))
save_plot(y_true, y_pred, title_template % m, fname_template % m)
def print_validation_test_accuracy(net):
print("validation %0.3f" % util.accuracy(
net, data.validation_dataset(batch_size=100)))
print("test %0.3f" % util.accuracy(net, data.test_dataset(batch_size=100)))
def logits_and_y_true_for_test_set(net, num_models):
logits = []
y_true = []
for imgs, labels in data.test_dataset(batch_size=100):
logits.append(net.logits(imgs, single_result=False,
model_dropout=False))
y_true.extend(labels)
logits = jnp.stack(logits) # (27, M, 100, 10)
logits = logits.transpose((1, 0, 2, 3)) # (M, 27, 100, 10)
logits = logits.reshape((num_models, 2700, 10)) # (M, 2700, 10)
return logits, y_true
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--num-models', type=int, default=1)
parser.add_argument('--max-conv-size', type=int)
parser.add_argument('--dense-kernel-size', type=int)
parser.add_argument('--ckpt-file', type=str)
opts = parser.parse_args()
print(opts, file=sys.stderr)
net = models.EnsembleNet(num_models=opts.num_models,
num_classes=10,
max_conv_size=opts.max_conv_size,
dense_kernel_size=opts.dense_kernel_size,
seed=0)
objax.io.load_var_collection(opts.ckpt_file, net.vars())
logits, y_true = logits_and_y_true_for_test_set(net, opts.num_models)
y_pred = jnp.argmax(logits.sum(axis=0), axis=-1)
print_validation_test_accuracy(net)
save_plot(y_true, y_pred, "ensemble", "cm.ensemble.png")
save_sub_model_plots(y_true, logits, opts.num_models,
"sub model %d", "cm.model_%d.png")