-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainrecurrent.py
253 lines (215 loc) · 6.31 KB
/
trainrecurrent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import argparse
import pickle
import random
import numpy as np
import torch
import environment as brisc
import matplotlib.pyplot as plt
from agents.random_agent import RandomAgent
from agents.recurrent_q_agent import RecurrentDeepQAgent
from agents.ai_agent import AIAgent
from evaluate import evaluate
from utils import BriscolaLogger
def train(
game,
agents,
num_epochs: int,
evaluate_every: int,
num_evaluations: int,
save: bool = False,
save_dir: str = "",
checkpoint = {},
):
"""The agent is trained for num_epochs number of episodes following an
epsilon-greedy policy. Every evaluate_every number of episodes the agent
is evaluated by playing num_evaluations number of games.
The winrate iobtained from these evaluations is used to select the best
model and its weights are saved.
"""
best_total_wins = -1
best_winrate = 0.0
rewards_per_episode = []
points_log = []
winrates = []
if save:
if not os.path.exists(os.path.dirname(save_dir)):
os.makedirs(os.path.dirname(save_dir))
for epoch in range(1, num_epochs + 1):
game_winner_id, winner_points, episode_rewards_log = brisc.play_episode(
game,
agents,
None,
True,
)
rewards_per_episode.append(episode_rewards_log)
if agents[game_winner_id].name == "RecurrentDeepQLearningAgent":
points_log.append(winner_points)
else:
points_log.append(120 - winner_points)
if epoch % evaluate_every == 0:
for agent in agents:
agent.make_greedy()
total_wins, points_history = evaluate(game, agents, num_evaluations)
winrates.append(total_wins)
current_winrate = total_wins[0] / (total_wins[0] + total_wins[1])
if current_winrate > best_winrate and save:
best_winrate = current_winrate
checkpoint['policy_state_dict'] = agents[0].policy_net.state_dict()
checkpoint['optimizer_state_dict'] = agents[0].optimizer.state_dict()
torch.save(checkpoint, save_dir)
# agents[0].save(save_dir + "model.pt")
print("SAVED")
for agent in agents:
agent.restore_epsilon()
if total_wins[0] > best_total_wins:
best_total_wins = total_wins[0]
# Update target network for Deep Q-learning agent
if epoch % agents[0].replace_every == 0:
agents[0].target_net.load_state_dict(
agents[0].policy_net.state_dict(),
)
print(f"Episode: {epoch} epsilon: {agents[0].epsilon:.4f}", end="\r")
if save:
checkpoint['rewards'] = rewards_per_episode
checkpoint['winrates'] = winrates
checkpoint['points'] = points_log
torch.save(checkpoint, save_dir)
return best_total_wins, rewards_per_episode
def main(argv=None):
seed = 0
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
parser = argparse.ArgumentParser()
parser.add_argument(
"--agent",
type=str,
help="Agent to train",
default="QLearningAgent",
)
parser.add_argument(
"--episodes",
type=int,
help="Number of training episodes",
default=10000,
)
parser.add_argument(
"--epsilon",
type=float,
help="Starting value of epsilon",
default=1.0,
)
parser.add_argument(
"--minimum_epsilon",
type=float,
help="Final value of epsilon",
default=0.1,
)
parser.add_argument(
"--epsilon_decay_rate",
type=float,
help="Epsilon decay rate",
default=0.999998,
)
parser.add_argument(
"--discount",
type=float,
help="Discount factor",
default=0.95,
)
parser.add_argument(
"--lr",
type=float,
help="Learning rate",
default=1e-4,
)
parser.add_argument(
"--evaluate_every",
type=int,
help="Number of episode after which evaluate the agent",
default=1000,
)
parser.add_argument(
"--num_evaluation",
type=int,
help="Number of games to perform evaluation",
default=1000,
)
parser.add_argument(
"--replace_every",
type=int,
help="",
default=1000,
)
parser.add_argument(
"--against",
type=str,
help="Agent to train against",
default="RandomAgent",
)
parser.add_argument(
"--path",
type=str,
help="Path where model/data is saved.",
)
parser.add_argument(
"--winning_reward",
type=int,
help="Extra reward given for winning the game",
default=100,
)
args = parser.parse_args()
# Initializing the environment
logger = BriscolaLogger(BriscolaLogger.LoggerLevels.TRAIN)
game = brisc.BriscolaGame(2, logger, None,args.winning_reward)
# Initialize agents
agents = []
agent = RecurrentDeepQAgent(
n_features=26,
n_actions=3,
epsilon=1.0,
minimum_epsilon=0.1,
replay_memory_capacity=1000000,
minimum_training_samples=2000,
batch_size=64,
discount=0.95,
loss_fn=torch.nn.SmoothL1Loss(),
learning_rate=1e-4,
replace_every=500,
epsilon_decay_rate=0.999998,
hidden_size=128,
fully_connected_layers=128,
optimizer=torch.optim.RMSprop,
momentum=.99,
sequence_len=4,
)
checkpoint = {
'config': vars(agent),
'info': 'reward for winning, vs RulesAgent',
'policy_state_dict': None,
'optimizer_state_dict': None,
'rewards': [],
'winrates': [],
'points': [],
}
agents.append(agent)
if args.against == "AIAgent":
agent = AIAgent()
else:
agent = RandomAgent()
agents.append(agent)
save_model = True if args.path else False
_, rewards_per_episode = train(
game,
agents,
args.episodes,
args.evaluate_every,
args.num_evaluation,
save=save_model,
save_dir=args.path,
checkpoint=checkpoint,
)
print("FINISHED TRAINING")
if __name__ == "__main__":
main()