forked from jseabold/538model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_census_data.py
93 lines (83 loc) · 3.41 KB
/
get_census_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""
Census data downloaded from quickfacts.census.gov/qfd/download_data.html
"""
import pandas
# this includes counties, state, and aggregate
# comma delimited
full_data_url = "http://quickfacts.census.gov/qfd/download/DataSet.txt"
# variable info is given here
data_info = "http://quickfacts.census.gov/qfd/download/DataDict.txt"
# these are the mappings that we want - fixed width file
fips_names = "http://quickfacts.census.gov/qfd/download/FIPS_CountyName.txt"
full_data = pandas.read_csv(full_data_url)
fips_names = pandas.read_fwf(fips_names, [(0,5),(6,-1)], header=None,
names=["FIPS", "name"])
#NOTE: this is fixed width and I'm not counting the stupid columns so
#we're going to do it programmatically
# note that one of the column headers is centered while the others aren't
from urllib2 import urlopen
import re
headers = urlopen(data_info).readline()
match = re.search("^(\w+\W)(\s{2}\s+\w+\s+\s{2})(\s{2}\w+\s+)"
"(\w+\s+)(\w+\s+)(\w+)", headers)
cols = [(headers.index(var_name), headers.index(var_name)+len(var_name)) for
var_name in match.groups()]
var_info = pandas.read_fwf(data_info, cols)
# convert numbers to state/county names
fips_mapping = {}
for _, (fips, name) in fips_names.iterrows():
fips_mapping.update({str(fips) : name})
fips_names = full_data.FIPS.astype(str).replace(fips_mapping)
del full_data['FIPS']
full_data['FIPS'] = fips_names
# just keep the states
states = full_data.FIPS.ix[~full_data.FIPS.str.contains(",")]
states = states.ix[~(states == "UNITED STATES")]
assert len(states) == 51
idx = states.index
full_data_states = full_data.ix[idx]
# Total Pop, 1
# % Under 18, 6
# Over 65, 7
# % females, 8
# % Black, 10
# % Native American, 11
# % Hispanic, 15
# % White, Non-Hispanic, 16
# % high school grad, 20
# % bachelor's degree, 21
# per capita income, 30
# median household income, 31
# pop per sq mile, 51
rows = [1,6,7,8,10,11,15,16,20,21,30,31,51]
var_info = var_info.ix[rows][["Data_Item","Item_Description"]]
full_data_states = full_data_states.filter(var_info.Data_Item.tolist() +
["FIPS"])
tot_pop = full_data["PST045211"]
per_18 = full_data["AGE295211"]/100. # under 18
per_65 = full_data["AGE775211"]/100. # over 65
older_pop = per_65*tot_pop
vote_pop = tot_pop - per_18*tot_pop - older_pop
full_data_states["vote_pop"] = vote_pop
full_data_states["older_pop"] = older_pop
del full_data_states["PST045211"]
del full_data_states["AGE295211"]
del full_data_states["AGE775211"]
del full_data_states["SEX255211"] # % females - not enough variation
del full_data_states["RHI325211"]
full_data_states["per_older"] = older_pop / tot_pop
full_data_states["per_vote"] = vote_pop / tot_pop
full_data_states.rename(columns={
"INC110210" : "median_income",
"INC910210" : "average_income",
"POP060210" : "pop_density",
"EDU635210" : "educ_hs",
"EDU685210" : "educ_coll",
"RHI825211" : "per_white",
"RHI725211" : "per_hisp", # not mutually excl.
"FIPS" : "state",
"RHI225211" : "per_black",
}, inplace=True)
full_data_states.set_index("state", inplace=True)
full_data_states.to_csv("/home/skipper/school/seaboldgit/talks/pydata/"
"data/census_demographics.csv")