forked from Kasuich/GoAlgoMlPart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBacktest.py
227 lines (181 loc) · 6.79 KB
/
Backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from __future__ import annotations
from typing import Dict, List, Iterable
import math
import pandas as pd
import numpy as np
from .SimpleDataset import SimpleDataset
# import dill
from catboost import CatBoostRegressor
from sklearn.model_selection import train_test_split
from lightgbm import LGBMRegressor
import catboost
import lightgbm
from sklearn.metrics import mean_squared_error
# from fastai.tabular.all import *
import warnings
import lightgbm as lgb
warnings.filterwarnings("ignore")
class Backtest:
@staticmethod
def calculate_year_income(
sum_before: int = None,
sum_after: int = None,
candle_period: int = None,
candle_val: int = None,
): # сколько свечей на валидации
if sum_after == sum_before:
return 0
income = sum_after - sum_before
time = candle_val * candle_period # сколько минут прошло
days = math.ceil(time / 785)
n = int(365 / days)
if sum_after > sum_before:
return (income * n + sum_before) / sum_before * 100
if sum_after < sum_before:
return (income * n) / sum_before * 100
def __init__(
self,
features,
balance: float,
max_balance_for_trading: float,
min_balance_for_trading: float,
period: str,
part_of_balance_for_buy: float = None,
sum_for_buy_rur: float = None,
sum_for_buy_num: float = None,
part_of_balance_for_sell: float = None,
sum_for_sell_rur: float = None,
sum_for_sell_num: float = None,
sell_all: bool = False,
notebook: bool = False,
):
self.features = features
self.balance = balance
self.start_balance = balance
self.max_balance = max_balance_for_trading
self.min_balance = min_balance_for_trading
self.cur_volume_rur = 0
self.cur_volume_num = 0
self.num_for_trade = 0
self.part_of_balance_for_buy = part_of_balance_for_buy
self.sum_for_buy_rur = sum_for_buy_rur
self.sum_for_buy_num = sum_for_buy_num
self.part_of_balance_for_sell = part_of_balance_for_sell
self.sum_for_sell_rur = sum_for_sell_rur
self.sum_for_sell_num = sum_for_sell_num
self.sell_all = sell_all
self.sum_volume = 0
self.preds = []
self.prices = []
self.sygnals = []
self.notebook = notebook
if period == "1m":
self.candle_period = 1
if period == "10m":
self.candle_period = 10
if period == "60,":
self.candle_period = 60
def get_preds(
self,
ticker,
timeframe,
seed=42,
candles=1000,
date_col: str = "date",
target_col: str = "target",
):
model_path = f'{12345678}_{ticker}_{timeframe}_{self.features["model"]}.bin'
test_data = SimpleDataset.create_dataset(
features=self.features,
ticker=ticker,
timeframe=timeframe,
candles=candles,
notebook=self.notebook,
)
test_data = test_data.drop(columns=[date_col, target_col])
self.prices = test_data["close"].values
if self.features["model"] == "catboost":
model = CatBoostRegressor(eval_metric="RMSE", random_seed=seed)
model.load_model(model_path)
self.preds = model.predict(test_data)
if self.features["model"] == "lightgbm":
model = lgb.Booster(model_file=model_path)
self.preds = model.predict(test_data)
# if self.features['model'] == 'tabular_learner':
# model = load_learner(model_path, cpu=True, pickle_module=dill)
# test_dl = model.dls.test_dl(test_data)
# self.preds, _ = model.get_preds(dl = test_dl)
self.sygnals = (self.preds > np.quantile(self.preds, 0.95)) * 1
def buy(self, price: float) -> str:
if self.part_of_balance_for_buy:
self.num_for_trade = self.balance * self.part_of_balance_for_buy // price
elif self.sum_for_buy_rur:
self.num_for_trade = self.sum_for_buy_rur // price
elif self.sum_for_buy_num:
self.num_for_trade = self.sum_for_buy_num
else:
return "error"
if self.balance - self.num_for_trade * price > 0:
self.cur_volume_num += self.num_for_trade
self.cur_volume_rur = self.cur_volume_num * price
self.balance -= self.num_for_trade * price
self.sum_volume += self.cur_volume_num * price
else:
pass
self.num_for_trade = 0
return self.change_parameters()
def sell(self, price: float) -> str:
if self.cur_volume_num > 0:
if self.part_of_balance_for_sell:
self.num_for_trade = (
self.balance * self.part_of_balance_for_sell // price
)
elif self.sum_for_sell_rur:
self.num_for_trade = self.sum_for_sell_rur // price
elif self.sum_for_sell_num:
self.num_for_trade = self.sum_for_sell_num
elif self.sell_all:
self.num_for_trade = self.cur_volume_num
else:
return "error"
self.cur_volume_num -= self.num_for_trade
self.cur_volume_rur = self.cur_volume_num * price
self.balance += self.num_for_trade * price
self.sum_volume += self.cur_volume_num * price
self.num_for_trade = 0
else:
pass
return self.change_parameters()
def change_parameters(self) -> str:
if self.balance < self.min_balance:
return "min_balance"
elif self.balance > self.max_balance:
return "max_balance"
else:
return "done"
def do_backtest(self, ticker, timeframe, candles=1000):
self.num_candles = candles
self.get_preds(ticker, timeframe, candles)
for idx in range(len(self.sygnals)):
status = ""
if self.sygnals[idx]:
status = self.buy(self.prices[idx])
else:
status = self.sell(self.prices[idx])
if (status == "min_balance") or (status == "max_balance"):
break
# print(self.sygnals[idx], self.prices[idx])
# print(status)
# print(self.balance)
# print(self.cur_volume_rur)
# print(self.cur_volume_num)
# print(self.num_for_trade)
# print('\n')
self.balance += self.cur_volume_rur
year_income = Backtest.calculate_year_income(
self.start_balance,
self.balance,
self.candle_period,
self.num_candles,
)
return self.balance, year_income