-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathevaluate_deeplab.py
executable file
·94 lines (73 loc) · 2.64 KB
/
evaluate_deeplab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python
# Martin Kersner, m.kersner@gmail.com
# 2016/03/23
from __future__ import print_function
import os
import sys
import glob
from skimage.io import imread
from py_img_seg_eval.eval_segm import *
from utils import load_binary_segmentation, convert_segmentation_mat2numpy
from ProgressBar import *
def main():
list_path, gt_path, result_path = process_arguments(sys.argv)
gt_ext = 'png'
result_ext = 'mat' # bin, mat
pa_list = []
ma_list = []
m_IU_list = []
fw_IU_list = []
list_images = load_list(list_path)
pb = ProgressBar(len(list_images))
for image_name in list_images:
gt_fullpath = os.path.join(gt_path, image_name) + '.' + gt_ext
label = imread(gt_fullpath)
if result_ext == 'bin':
result_fullpath = os.path.join(result_path, image_name) + '.' + result_ext
pred = load_binary_segmentation(result_fullpath, dtype='int16')
elif result_ext == 'mat':
result_fullpath = os.path.join(result_path, image_name) + '_blob_0.' + result_ext
pred = convert_segmentation_mat2numpy(result_fullpath)
pred = pred[0:label.shape[0], 0:label.shape[1]]
pa_list.append(pixel_accuracy(pred, label))
ma_list.append(mean_accuracy(pred, label))
m_IU_list.append(mean_IU(pred, label))
fw_IU_list.append(frequency_weighted_IU(pred, label))
pb.print_progress()
print("pixel_accuracy: " + str(np.mean(pa_list)))
print("mean_accuracy: " + str(np.mean(ma_list)))
print("mean_IU: " + str(np.mean(m_IU_list)))
print("frequency_weighted: " + str(np.mean(fw_IU_list)))
def load_list(list_path):
list_data = []
with open(list_path, 'rb') as f:
for line in f:
list_data.append(line.strip())
return list_data
def process_arguments(argv):
list_path = None
gt_path = None
result_path = None
if len(argv) == 4:
list_path = argv[1]
gt_path = argv[2]
result_path = argv[3]
else:
help()
if not os.path.exists(list_path):
help('Given LIST_PATH does not exist!\n')
if not os.path.exists(gt_path):
help('Given GT_PATH does not exist!\n')
if not os.path.exists(result_path):
help('Given RESULT_PATH does not exist!\n')
return list_path, gt_path, result_path
def help(msg=''):
print(msg +
'Usage: python evaluate_deeplab_bin.py LIST_PATH GT_PATH RESULT_PATH\n'
'LIST_PATH denotes path to text file with list of images for evaluating.\n'
'GT_PATH denotes path to ground truth labels that will be used for evaluation.\n'
'RESULT_PATH denotes path to segmentation results that will be evaluated.'
, file=sys.stderr)
exit()
if __name__ == '__main__':
main()