-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02_logisticRegression.py
executable file
·35 lines (27 loc) · 1.13 KB
/
02_logisticRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pandas as pd
import pickle
import time
import logging
def predictX(clf, X_test):
predicted = clf.predict(X_test)
return predicted
formatter = logging.Formatter('%(asctime)s %(message)s')
def setup_logger(name, log_file, level=logging.DEBUG):
handler = logging.FileHandler(log_file)
handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(level)
logger.addHandler(handler)
return logger
logger_fullLoops = setup_logger('logger_fullLoops', "/home/marlene/messungen/2_logreg/lr_fullLoops_logs.log")
logger_singleLoops = setup_logger('logger_singleLoops', '/home/marlene/messungen/2_logreg/lr_singleLoops_logs.log')
for i in range (30):
logger_fullLoops.info("Start")
for i in range (10):
logger_singleLoops.info("Start")
logreg_model = pickle.load(open('02_logisticRegression/Logregmodel_3months.pkl', 'rb'))
X_test_logreg = pickle.load(open('02_logisticRegression/X_test_3months.pkl', 'rb'))
predicted = predictX(logreg_model, X_test_logreg)
logger_singleLoops.info("Stop")
time.sleep(10)
logger_fullLoops.info("Stop")