-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslda.py
352 lines (293 loc) · 10.2 KB
/
slda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Latent Dirichlet Allocation + collapsed Gibbs sampling
# This code is available under the MIT License.
# (c)2010-2011 Nakatani Shuyo / Cybozu Labs Inc.
import numpy as np
import random
import sys
import pandas as pd
from collections import defaultdict
from logging import getLogger
from sklearn import linear_model
import math
from collections import Counter
np.random.seed(10)
random.seed(10)
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0) # only difference
class sLDA:
'''
Latent Dirichlet Allocation with Collapsed Gibbs Sampling
'''
SAMPLING_RATE = 10
def __init__(self, K, alpha, beta, docs, Y, V, trained=None):
# set params
self.K = K
self.alpha = alpha
self.beta = beta
self.docs = docs
self.Y = np.array(Y)
self.V = V
# init state
self._init_state()
self.trained = trained
if self.trained is not None:
self.n_z_w = self.trained.n_z_w
self.n_z = self.trained.n_z
# init logger
self.logger = getLogger(self.__class__.__name__)
def _init_state(self):
'''
Initialize
- z_m_n: topics assigned to word slots in documents
- n_m_z: freq. of topics assigned to documents
- n_z_w: freq. of words assigned to topics
- n_z: freq. of topics assigned
'''
# assign zero + hyper-params
self.z_m_n = []
self.n_m_z = np.zeros((len(self.docs), self.K)) + self.alpha
self.n_z_w = np.zeros((self.K, self.V)) + self.beta
self.n_z = np.zeros(self.K) + self.V * self.beta
# randomly assign topics
self.N = 0
for m, doc in enumerate(self.docs):
self.N += len(doc)
z_n = []
for t in doc:
z = np.random.randint(0, self.K)
z_n.append(z)
self.n_m_z[m, z] += 1
self.n_z_w[z, t] += 1
self.n_z[z] += 1
self.z_m_n.append(np.array(z_n))
self.update_z_mean()
self.update_normal_params()
def update_z_mean(self, idx=None):
if idx == None:
self.z_mean = []
for z_n in self.z_m_n:
dict_default = Counter(dict(zip(range(self.K),[0]*self.K)))
cnt = Counter(z_n)
dict_default.update(cnt)
aux_k = pd.Series(dict_default).sort_index()
#aux_k[:] = 0
#res_z = pd.Series(z_n).value_counts()
#aux_k =aux_k.add(res_z, fill_value = 0).sort_index()
z_d_mean = list(aux_k.copy()/len(z_n))
self.z_mean.append(z_d_mean)
else:
dict_default = Counter(dict(zip(range(self.K),[0]*self.K)))
cnt = Counter(self.z_m_n[idx])
dict_default.update(cnt)
aux_k = pd.Series(dict_default).sort_index()
z_d_mean = list(aux_k.copy()/len(self.z_m_n[idx]))
self.z_mean[idx] = z_d_mean
def get_alpha_n_m_z(self, idx=None):
'''
Return self.n_m_z (including alpha)
'''
if idx is None:
return self.n_m_z
else:
return self.n_m_z[idx]
def add_last_term(self,n):
#inte = softmax(np.dot(np.array(self.eta).T, self.Y[n]))
#r= inte
#Calculating the term
a1 = self.Y[n]
a2 = self.z_mean[n]
inte = (self.Y[n]- np.dot(self.eta.T, self.z_mean[n]))**2 / (2* self.sigma2)
#print inte
calc = 1/(2 * math.pi*self.sigma2)**0.5
r= calc* np.exp(-inte)
return r
def update_normal_params(self):
Y = self.Y
#a_z_mean = np.array(self.z_mean)
#IF TARGET IS DISCRETE
#lr =linear_model.LogisticRegression(fit_intercept=False)
#lr.fit(self.z_mean,self.Y)
#sq =
#USING SKLEARN TO OPTIMIZE TIMES - IF TARGET IS CONTINUOUS
#print(pd.Series(Y).value_counts())
lr =linear_model.LinearRegression(fit_intercept=False)
lr.fit(np.array(self.z_mean),self.Y)
sq = np.mean((lr.predict(self.z_mean)-self.Y)**2)/len(self.Y)
self.eta = lr.coef_
self.sigma2 = sq
def inference(self):
'''
Re-assignment of topics to words
'''
for m, doc in enumerate(self.docs):
z_n = self.z_m_n[m]
n_m_z = self.n_m_z[m]
term_extra = self.add_last_term(m)
#print("document", m)
for n, t in enumerate(doc):
# discount for n-th word t with topic z
self.discount(z_n, n_m_z, n, t)
# sampling topic new_z for t
p_z = self.n_z_w[:, t] * self.get_alpha_n_m_z(m) / self.n_z
p_z = p_z* term_extra
new_z = np.random.multinomial(1, p_z / p_z.sum()).argmax()
# set z the new topic and increment counters
self.assignment(z_n, n_m_z, n, t, new_z)
#Update normal parameters
self.update_z_mean(m)
self.update_normal_params()
def discount(self, z_n, n_m_z, n, t):
'''
Cancel a topic assigned to a word slot
'''
z = z_n[n]
n_m_z[z] -= 1
if self.trained is None:
self.n_z_w[z, t] -= 1
self.n_z[z] -= 1
def perplexity_new_docs(self, new_docs):
'''
Compute the perplexity
'''
if self.trained is None:
phi = self.worddist()
else:
phi = self.trained.worddist()
thetas = self.topicdist()
log_per = 0
N = 0
for m, doc in enumerate(new_docs):
theta = thetas[m]
for w in doc:
log_per -= np.log(np.inner(phi[:,w], theta))
N += len(doc)
return np.exp(log_per / N)
def assignment(self, z_n, n_m_z, n, t, new_z):
'''
Assign a topic to a word slot
'''
z_n[n] = new_z
n_m_z[new_z] += 1
if self.trained is None:
self.n_z_w[new_z, t] += 1
self.n_z[new_z] += 1
def worddist(self):
'''
phi = P(w|z): word probability of each topic
'''
return self.n_z_w / self.n_z[:, np.newaxis]
def get_alpha(self):
'''
fixed alpha
'''
return self.alpha
def topicdist(self):
'''
theta = P(z|d): topic probability of each document
'''
doclens = np.array(list(map(len, self.docs)))
return self.get_alpha_n_m_z()\
/ (doclens[:, np.newaxis] + self.K * self.get_alpha())
def perplexity(self):
'''
Compute the perplexity
'''
if self.trained is None:
phi = self.worddist()
else:
phi = self.trained.worddist()
thetas = self.topicdist()
log_per = 0
N = 0
for m, doc in enumerate(self.docs):
theta = thetas[m]
for w in doc:
log_per -= np.log(np.inner(phi[:,w], theta))
N += len(doc)
return np.exp(log_per / N)
def learning(self, iteration, voca):
'''
Repeat inference for learning
'''
perp = self.perplexity()
self.log(self.logger.info, "PERP0", [perp])
for i in range(iteration):
self.hyperparameter_learning()
self.inference()
print i
if (i + 1) % self.SAMPLING_RATE == 0:
perp = self.perplexity()
self.log(self.logger.info, "PERP%s" % (i+1), [perp])
acc = self.calc_accuracy(self.docs, self.Y)
print("Epoch %s, pplxt %s, acc %s" %(i,perp, acc))
self.output_word_dist_with_voca(voca)
def hyperparameter_learning(self):
'''
No hyperparameter learning in LDA
'''
pass
def calc_accuracy(self,new_docs, y_real):
predicted = self.predict_y(new_docs)
error = 0.
for i in range(len(predicted)):
y_p = np.argmax(predicted[i])+1
if y_p!= y_real[i]:
error+= 1
return 1-(error/len(predicted))
def predict_y(self, new_docs):
prediction = []
for doc in new_docs:
z_doc = []
for n, word in enumerate(doc):
p_z = self.n_z_w[:, word]
new_z = np.random.multinomial(1, p_z / p_z.sum()).argmax()
z_doc.append(new_z)
#print(len(doc),len(z_doc))
dict_default = Counter(dict(zip(range(self.K),[0]*self.K)))
cnt = Counter(z_doc)
dict_default.update(cnt)
aux_k = pd.Series(dict_default).sort_index()
z_d_mean = list(aux_k.copy()/len(doc))
val = np.dot(self.eta.T, z_d_mean)
prediction.append(val)
return prediction
def word_dist_with_voca(self, voca, topk=None):
'''
Output the word probability of each topic
'''
phi = self.worddist()
if topk is None:
topk = phi.shape[1]
result = defaultdict(dict)
for k in range(self.K):
for w in np.argsort(-phi[k])[:topk]:
result[k][voca[w]] = phi[k, w]
return result
def output_word_dist_with_voca(self, voca, topk=10):
word_dist = self.word_dist_with_voca(voca, topk)
for k in word_dist:
word_dist[k] = sorted(word_dist[k].items(),
key=lambda x: x[1], reverse=True)
for w, v in word_dist[k]:
self.log(self.logger.debug, "TOPIC", [k, w, v])
def log(self, method, etype, messages):
method("\t".join(map(str, [self.params(), etype] + messages)))
def params(self):
return '''K=%d, alpha=%s, beta=%s''' % (self.K, self.alpha, self.beta)
def __getstate__(self):
'''
logger cannot be serialized
'''
state = self.__dict__.copy()
del state['logger']
return state
def __setstate__(self, state):
'''
logger cannot be serialized
'''
self.__dict__.update(state)
self.logger = getLogger(self.__class__.__name__)