-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreplay.py
46 lines (36 loc) · 1.4 KB
/
replay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
from src.networks.ac_network import AC_Network
import tensorflow as tf
import gym
with tf.device("/cpu:0"):
test_model_path = 'net/a3c.ckpt'
env = gym.make("Festium-v2")
class ReplayGuy():
def __init__(self):
self.env = env.unwrapped
self.local_net = AC_Network(env, 'global',test_model_path, None, None)
self.sess = tf.Session()
tf.global_variables_initializer().run(session=self.sess)
self.local_net.load_ckpt(self.sess)
self.step = 0
def play(self):
ob = self.env.reset()
rnn_state = self.local_net.state_init
while True:
self.step += 1
self.env.render()
a, v, rnn_state = self.sess.run([self.local_net.a, self.local_net.v, self.local_net.state_out], {
self.local_net.inputs : [ob],
self.local_net.state_in[0]: rnn_state[0],
self.local_net.state_in[1]: rnn_state[1]
})
ob, reward, done, info = self.env.step(a)
if done:
rnn_state = self.local_net.state_init
ob = env.reset()
if self.step == 120:
self.step=0
break
guy = ReplayGuy()
while True:
guy.play()