-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathM_M_S_Q.m
318 lines (235 loc) · 12.4 KB
/
M_M_S_Q.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
% Configuration
clear; % Clear all variables from the workspace
clc; % Clear the command window
close all; % Close all open figure windows
rng(11); % Random generator seed for reproducibility
% Parameters
lambda = 30; % Arrival rate (lambda calls per unit time)
mu = 2; % Service rate (mu calls per unit time)
S_range = 1:1:20; % Number of servers (range of them)
Q = 3; % Maximum number of calls in queue
total_time = 100; % Total time for the simulation (total unit time)
% Storage
delay_probabilities = zeros(size(S_range)); % All simulated delay probabilities
theoretical_delay_probabilities = zeros(size(S_range)); % All theoretical delay probabilities
loss_probabilities = zeros(size(S_range)); % All simulated loss probabilities
theoretical_loss_probabilities = zeros(size(S_range)); % All theoretical loss probabilities
utilization = zeros(size(S_range)); % All simulated server utilization rates
theoretical_utilization = zeros(size(S_range)); % All theoretical server utilization rates
% Simulations for different values of S
for idx = 1:length(S_range)
S = S_range(idx); % Current S value
% Storage
time_in_system = []; % Unit time at specific event (index is event)
calls_in_system = []; % Number of calls at specific event (index is event)
% Initialization
current_time = 0; % Current system time
time_busy = 0; % Total time servers are busy
num_calls = 0; % Current number of calls in system
num_queue_calls = 0; % Current number of calls in queue
num_offered_calls = 0; % Number of offered calls
num_delayed_calls = 0; % Number of delayed calls
num_dropped_calls = 0; % Number of dropped calls
next_arrival_time = NaN; % Next arrival time
scheduled_departure_times = []; % Scheduled departures (not in order)
% Simulation
while current_time < total_time
% Set the arrival time for the first call
if (isnan(next_arrival_time))
inter_arrival_time = exprnd(1 / lambda);
next_arrival_time = current_time + inter_arrival_time;
% Log event
time_in_system(end + 1) = current_time;
calls_in_system(end + 1) = num_calls;
continue;
end
% Determine if the next event is an arrival or a departure
if isempty(scheduled_departure_times) || next_arrival_time <= min(scheduled_departure_times)
% Arrival event
current_time = next_arrival_time;
next_arrival_time = NaN; % Remove processed arrival
% Increase the offered calls count
num_offered_calls = num_offered_calls + 1;
% Determine if there are available servers
if num_calls < S
% Server is available
num_calls = num_calls + 1;
% Schedule the departure time for this call
service_time = exprnd(1 / mu);
scheduled_departure_times(end + 1) = current_time + service_time;
% Update server busy time
time_busy = time_busy + service_time;
else
% All servers are busy, determine if queue is available
if (num_queue_calls < Q)
% Queue is available
num_queue_calls = num_queue_calls + 1;
num_delayed_calls = num_delayed_calls + 1;
else
% Queue is full, drop the call
num_dropped_calls = num_dropped_calls + 1;
end
end
% Set the arrival time for the next call
inter_arrival_time = exprnd(1 / lambda);
next_arrival_time = current_time + inter_arrival_time;
else
% Departure event
[departure_time, departure_index] = min(scheduled_departure_times);
current_time = departure_time;
scheduled_departure_times(departure_index) = []; % Remove processed departure
% Check if there are calls in the queue
if num_queue_calls > 0
% Move a call from the queue to a server
num_queue_calls = num_queue_calls - 1;
% Schedule the departure time for this call
service_time = exprnd(1 / mu);
scheduled_departure_times(end + 1) = current_time + service_time;
% Update server busy time
time_busy = time_busy + service_time;
else
num_calls = num_calls - 1;
end
end
% Log event
time_in_system(end + 1) = current_time;
calls_in_system(end + 1) = num_calls + num_queue_calls;
end
% Simulated delay probability for this S
delay_probabilities(idx) = num_delayed_calls / (num_offered_calls-num_dropped_calls);
% Theoretical delay probability using Erlang C formula
numerator = ((lambda / mu)^S / factorial(S)) * (S / (S - (lambda / mu)));
denominator = 0;
for k = 0:S-1
denominator = denominator + (lambda / mu)^k / factorial(k);
end
denominator = denominator + ((lambda / mu)^S / factorial(S)) * (S / (S - (lambda / mu)));
theoretical_delay_probabilities(idx) = numerator / denominator;
% Simulated loss probability for specific S value
loss_probabilities(idx) = num_dropped_calls / num_offered_calls;
% Theoretical loss probability using Erlang B formula
numerator = (lambda / mu)^S / factorial(S);
denominator = 0;
for k = 0:S
denominator = denominator + (lambda / mu)^k / factorial(k);
end
theoretical_loss_probabilities(idx) = numerator / denominator;
% Simulated server utilization
utilization(idx) = time_busy / (total_time * S);
% Theoretical server utilization
theoretical_utilization(idx) = min(lambda / (S*mu), 1);
% Only done for the last simulation
if idx == length(S_range)
% Weighted average number of calls in the system
sum_calls = 0;
for i = 1:length(time_in_system)-1
% Duration of the current event interval
interval_duration = time_in_system(i+1) - time_in_system(i);
% Weighted sum
sum_calls = sum_calls + calls_in_system(i) * interval_duration;
end
average_calls = sum_calls / total_time;
% For probability distribution of number of calls if calls weren't dropped in the system
[n, edges] = histcounts(calls_in_system, 'Normalization', 'probability');
% Screen size for positioning
screen_size = get(0, 'ScreenSize');
figure_width = screen_size(3) / 3;
figure_height = screen_size(4) - 200;
% Visualization: number of calls in the system over time and probability distribution of calls in the system
figure(1);
set(gcf, 'Color', [0.15, 0.15, 0.15], 'Position', [0, 100, figure_width, figure_height]);
% Number of calls in the system over time
subplot(2, 1, 1);
stairs(time_in_system, calls_in_system, 'LineWidth', 1, 'Color', [0.9, 0.6, 0.2]);
hold on;
yline(average_calls, 'r--', 'LineWidth', 2);
yline(S, 'g--', 'LineWidth', 1);
yline(Q+S, 'c--', 'LineWidth', 1);
title('Number of Calls in M/M/S/Q System over Time', 'Color', 'w', 'FontSize', 14);
xlabel('Time', 'Color', 'w', 'FontSize', 12);
ylabel('Number of Calls', 'Color', 'w', 'FontSize', 12);
grid on;
set(gca, 'GridColor', 'w', 'GridAlpha', 0.7, 'Color', [0.05, 0.05, 0.05], 'XColor', 'w', 'YColor', 'w');
legend({'Calls in System', ['Average = ' num2str(average_calls, '%.2f')], 'System Capacity', 'Queue Capacity'}, 'Location', 'Best', 'TextColor', 'w');
axis equal;
% Probability distribution of calls in the system
subplot(2, 1, 2);
bar(edges(1:end-1) + diff(edges)/2, n, 'FaceColor', [0.9, 0.6, 0.2], 'EdgeColor', 'none', 'FaceAlpha', 0.8);
hold on;
title('Probability Distribution of Calls in M/M/S/Q System', 'Color', 'w', 'FontSize', 14);
xlabel('Number of Calls', 'Color', 'w', 'FontSize', 12);
ylabel('Probability', 'Color', 'w', 'FontSize', 12);
grid on;
set(gca, 'GridColor', 'w', 'GridAlpha', 0.7, 'Color', [0.05, 0.05, 0.05], 'XColor', 'w', 'YColor', 'w');
legend({'Calls Distribution'}, 'Location', 'Best', 'TextColor', 'w');
axis padded;
end
end
% Preprocess theoretical delay probabilities to handle NaN and values > 1
theoretical_delay_probabilities(isnan(theoretical_delay_probabilities) | theoretical_delay_probabilities > 1) = 1;
% Calculate trend line of simulated delay probability using cubic smoothing spline
spline_fit = csaps(S_range, delay_probabilities, 0.05);
fitted_delay_probabilities = fnval(spline_fit, S_range);
fitted_delay_probabilities = max(min(fitted_delay_probabilities, 1), 0);
fitted_qos = 1 - fitted_delay_probabilities;
% Calculate trend line of simulated loss probability using cubic smoothing spline
spline_fit = csaps(S_range, loss_probabilities, 0.05);
fitted_loss_probabilities = fnval(spline_fit, S_range);
fitted_loss_probabilities = max(min(fitted_loss_probabilities, 1), 0);
fitted_qos = 1 - fitted_loss_probabilities;
% Calculate trend line of simulated utilization using cubic smoothing spline
u_spline_fit = csaps(S_range, utilization, 0.05);
fitted_utilization = fnval(u_spline_fit, S_range);
fitted_utilization = max(min(fitted_utilization, 1), 0);
% Screen size for positioning
screen_size = get(0, 'ScreenSize');
figure_width = screen_size(3) / 3;
figure_height = screen_size(4) - 200;
% Visualization: probability of delay vs capacity and probability of loss vs capacity
figure(2);
set(gcf, 'Color', [0.15, 0.15, 0.15], 'Position', [figure_width, 100, figure_width, figure_height]);
% Probability of delay vs capacity
subplot(2, 1, 1);
plot(S_range, delay_probabilities, 'o', 'MarkerSize', 3, 'LineWidth', 1, 'Color', [0.9, 0.6, 0.2]);
hold on;
plot(S_range, fitted_delay_probabilities, 'r--', 'LineWidth', 2);
plot(S_range, theoretical_delay_probabilities, '--', 'LineWidth', 1, 'Color', [0.0, 1.0, 1.0]);
plot(S_range, fitted_qos, 'g--', 'LineWidth', 1);
title('Probability of Delay in M/M/S/Q System vs Capacity (S)', 'Color', 'w', 'FontSize', 14);
xlabel('Capacity (S)', 'Color', 'w', 'FontSize', 12);
ylabel('Probability of Delay', 'Color', 'w', 'FontSize', 12);
grid on;
set(gca, 'GridColor', 'w', 'GridAlpha', 0.7, 'Color', [0.05, 0.05, 0.05], 'XColor', 'w', 'YColor', 'w');
legend({'Simulated Delay Probability', 'Trend of Simulated Delay Probability', 'Theoretical Delay Probability', 'QoS'}, 'Location', 'Best', 'TextColor', 'w');
ylim([0 1]);
axis normal;
% Probability of loss vs capacity
subplot(2, 1, 2);
plot(S_range, loss_probabilities, 'o', 'MarkerSize', 3, 'LineWidth', 1, 'Color', [0.9, 0.6, 0.2]);
hold on;
plot(S_range, fitted_loss_probabilities, 'r--', 'LineWidth', 2);
plot(S_range, theoretical_loss_probabilities, '--', 'LineWidth', 1, 'Color', [0.0, 1.0, 1.0]);
plot(S_range, fitted_qos, 'g--', 'LineWidth', 1);
title('Probability of Loss in M/M/S/Q System vs Capacity (S)', 'Color', 'w', 'FontSize', 14);
xlabel('Capacity (S)', 'Color', 'w', 'FontSize', 12);
ylabel('Probability of Loss', 'Color', 'w', 'FontSize', 12);
grid on;
set(gca, 'GridColor', 'w', 'GridAlpha', 0.7, 'Color', [0.05, 0.05, 0.05], 'XColor', 'w', 'YColor', 'w');
legend({'Simulated Loss Probability', 'Trend of Simulated Loss Probability', 'Theoretical Loss Probability', 'QoS'}, 'Location', 'Best', 'TextColor', 'w');
ylim([0 1]);
axis normal;
% Visualization: server utilization vs capacity
figure(3);
set(gcf, 'Color', [0.15, 0.15, 0.15], 'Position', [2 * figure_width, 100, figure_width, figure_height / 2]);
plot(S_range, utilization * 100, 'o', 'MarkerSize', 3, 'LineWidth', 1, 'Color', [0.9, 0.6, 0.2]);
hold on;
plot(S_range, fitted_utilization * 100, 'r--', 'LineWidth', 2);
plot(S_range, theoretical_utilization * 100, '--', 'LineWidth', 1, 'Color', [0.0, 1.0, 1.0]);
title('Server Utilization in M/M/S/Q System vs Capacity (S)', 'Color', 'w', 'FontSize', 14);
xlabel('Capacity (S)', 'Color', 'w', 'FontSize', 12);
ylabel('Server Utilization (%)', 'Color', 'w', 'FontSize', 12);
grid on;
set(gca, 'GridColor', 'w', 'GridAlpha', 0.7, 'Color', [0.05, 0.05, 0.05], 'XColor', 'w', 'YColor', 'w');
legend({'Simulated Utilization', 'Trend of Simulated Utilization', 'Theoretical Utilization'}, 'Location', 'Best', 'TextColor', 'w');
ylim([0 100]);
axis normal;