-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_patchgan.py
266 lines (209 loc) · 8.53 KB
/
train_patchgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models
import collections
import math
import time
import pickle
import matplotlib.pyplot as plt
from PIL import Image
from tensorboardX import SummaryWriter
cmap = plt.cm.jet
from nyu_dataloader import DataLoader
import model
from unet import UNet
logger = SummaryWriter("runs/run1")
def weights_init(m):
# Initialize filters with Gaussian random weights
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.ConvTranspose2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class MaskedMSELoss(nn.Module):
def __init__(self):
super(MaskedMSELoss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
self.loss = (diff ** 2).mean()
return self.loss
class MaskedL1Loss(nn.Module):
def __init__(self):
super(MaskedL1Loss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
self.loss = diff.abs().mean()
return self.loss
class berHuLoss(nn.Module):
def __init__(self):
super(berHuLoss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
huber_c = torch.max(pred - target)
huber_c = 0.2 * huber_c
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
diff = diff.abs()
huber_mask = (diff > huber_c).detach()
diff2 = diff[huber_mask]
diff2 = diff2 ** 2
self.loss = torch.cat((diff, diff2)).mean()
return self.loss
class ScaleInvariantError(nn.Module):
def __init__(self, lamada=0.5):
super(ScaleInvariantError, self).__init__()
self.lamada = lamada
return
def forward(self, y_true, y_pred):
first_log = torch.log(torch.clamp(y_pred, 0.0001))
second_log = torch.log(torch.clamp(y_true, 0.0001))
d = first_log - second_log
loss = torch.mean(d * d) - self.lamada * torch.mean(d) * torch.mean(d)
return loss
def create_depth_color(depth):
d_min = np.min(depth)
d_max = np.max(depth)
depth_relative = (depth - d_min) / (d_max - d_min)
depth = (255 * cmap(depth_relative)[:, :, :3])
return depth
def save_image(model, x, y, batch, mode="train"):
pred = model(x)
npimg = pred.cpu().detach().numpy()
depth = create_depth_color(np.transpose(npimg[0], [1,2,0])[:, :, 0])
target = create_depth_color(np.transpose(y[0].cpu().numpy(), [1,2,0])[:, :, 0])
orig = 255 * np.transpose(x[0].cpu().numpy(), [1,2,0])
img = np.concatenate((orig, target, depth), axis =1)
img = Image.fromarray(img.astype('uint8'))
img.save('saved_images/%s_image_%d.jpg'%(mode, batch))
def adjust_learning_rate(optimizer, epoch, lr_init):
"""Sets the learning rate to the initial LR decayed by 2 every 5 epochs"""
lr = lr_init * (0.5 ** (epoch // 5))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential (
nn.Conv2d(1, 32, 4, 1, 0),
nn.BatchNorm2d(32),
nn.ReLU(True),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 3, 2, 1),
nn.BatchNorm2d(32),
nn.ReLU(True),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 3, 2, 1),
nn.BatchNorm2d(32),
nn.ReLU(True)
)
self.out = nn.Linear(32, 1)
def forward(self, x):
x = self.model(x)
x = x.view(-1, 32)
x = self.out(x)
return torch.sigmoid(x)
def set_requires_grad(net, requires_grad=False):
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def train(train_loader, val_loader, model, discriminator, criterion_L1, criterion_MSE,
criterion_berHu, criterion_GAN, optimizer, optimizer_D, epoch, batch_size):
model.train() # switch to train mode
eval_mode = False
init_lr = optimizer.param_groups[0]['lr']
valid_T = torch.ones(batch_size, 1).cuda().double()
zeros_T = torch.zeros(batch_size, 1).cuda().double()
for iter_ in range(num_batches):
input, target = next(train_loader.get_one_batch(batch_size))
input, target = input, target
input, target = input.cuda(), target.cuda()
torch.cuda.synchronize()
optimizer.zero_grad()
pred = model(input)
loss_L1 = criterion_L1(pred, target)
loss_MSE = criterion_MSE(pred, target)
loss_berHu = criterion_berHu(pred, target)
loss_SI = criterion_SI(pred, target)
set_requires_grad(discriminator, False)
loss_adv = 0
for a in range(12):
for b in range(16):
row = 19 * a
col = 19 * b
patch_fake = pred[:, :, row:row+19, col:col+19]
pred_fake = discriminator(patch_fake)
loss_adv += criterion_GAN(pred_fake, valid_T)
loss_gen = loss_SI + 0.5 * loss_adv
loss_gen.backward()
optimizer.step()
set_requires_grad(discriminator, True)
optimizer_D.zero_grad()
loss_D = 0
for a in range(12):
for b in range(16):
row = 19 * a
col = 19 * b
patch_fake = pred[:, :, row:row+19, col:col+19]
patch_real = target[:, :, row:row+19, col:col+19]
pred_fake = discriminator(patch_fake.detach())
pred_real = discriminator(patch_real)
loss_D_fake = criterion_GAN(pred_fake, zeros_T)
loss_D_real = criterion_GAN(pred_real, valid_T)
loss_D += 0.5 * (loss_D_fake + loss_D_real)
loss_D.backward()
optimizer_D.step()
torch.cuda.synchronize()
if (iter_ + 1) % 10 == 0:
save_image(model, input, target, iter_)
logger.add_scalar('L1', loss_L1.item())
logger.add_scalar('MSE', loss_MSE.item())
logger.add_scalar('berHu', loss_berHu.item())
logger.add_scalar('SI', loss_SI.item())
print('Train Epoch: {} Batch: [{}/{}], SI: {:0.4f}, ADV:{:0.3f} L1 ={:0.3f}, MSE={:0.3f}, berHu={:0.3f}, Disc:{:0.3f}'.format(
epoch, iter_ + 1, num_batches, loss_SI.item(), loss_adv.item(),
loss_L1.item(), loss_MSE.item(), loss_berHu.item(), loss_D.item()))
train_loader = DataLoader("../cnn_depth_tensorflow/data/nyu_datasets/")
val_loader = DataLoader("../cnn_depth_tensorflow/data/nyu_datasets/", mode="val")
model = UNet(3, 1).double()
model = nn.DataParallel(model).cuda()
discriminator = Discriminator().double()
discriminator.apply(weights_init)
discriminator = discriminator.cuda()
discriminator = nn.DataParallel(discriminator)
optimizer = torch.optim.Adam(model.parameters(), lr = 0.001, weight_decay=1e-4)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr = 4 * 0.001)
criterion_L1 = MaskedL1Loss()
criterion_berHu = berHuLoss()
criterion_MSE = MaskedMSELoss()
criterion_SI = ScaleInvariantError()
criterion_GAN = nn.BCELoss()
criterion = nn.L1Loss()
batch_size = 8
num_epochs = 40
num_batches = len(train_loader)//batch_size
for epoch in range(25):
adjust_learning_rate(optimizer, epoch, 0.001)
train(train_loader, val_loader, model, discriminator, criterion_L1, criterion_MSE, criterion_berHu,
criterion_GAN, optimizer, optimizer_D, epoch, batch_size)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, './unet.pth')